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Abstract: Sustainable development is s process and nrganizing prinelple for sustaining finile resources necessary 10
provide Tor the vegquirement of the nest generation for life on the planct. As defined hy the United Nations,
Sustiinable develapment is g eomman agenda Tor plobal concern which everybody agrees upon, hut bhringing this
rlobal concern into public policies is o difficult task.1 Social development is @ method of using of resources in
manner that aims to satisfy human needs while maintaining the environment so that (hese needs ean be fulfill not
in the present time but also for the future generation. Sustainable development focuses upon a relationship betseen
humans and their environment and indicates a w arning that humans eanuot push development, which is agiinsd
miture as in the end it is alwass the nature, which js going to win, Ifsustainahle development is to he successful, the
attitudes of individuals as well as povernments with regard (o our current lifestyles and the impact they have on the
cavironment will need to he changed. Sustainable development has some forward Jooking and broad based
objectives. which transcend class, easte, language and regional barriers.

Kerwards: Sustainable development

1. Introduction

Sustainable development is based on social sustinability. In the present scenario of Indian socicty, it becomes more
important for the study that how the social sustainability effects the sustainable development. This paper, “Socil
Sustainability in lndia : Challenges and Hurdles™ enquire the challenges and hurdles before the social sustamabibity to mect
the objective of the sustainable development.For the proper perspeetive of the study it s necessary to define the social
sustainability . Social sustainability is the ability of social system. According o the Western Australia Couneil of Socid
Services { WACOSS), Social sustainability occurs the formal and informal processes, sy stems, structures and relationships
activity support the capacity of current und Tuture generations to create healthy and livable communities and equitzble
diverse, demociatic amd provide @ vood quality ol life.2

Sucial sustainability is a process for creating sustainable, successful places thar promote wellbeing by undersianding
what peaple need from the places they live and work. Social sustainability combines design of the physical realm with
design of social world- infrastructure to support social and cultural life, social amenities, system for ciizen engagement
and space for people and place to invelve.3

The three pillars of sustainability are the powerful tools for the defining the complete sustainability problem. [t
consists of al least economic, social and environmental pillars, % any pillar is weak then the system as a whole in
unsustinable.?

Sustainability

Social
Environment
Economic

Sovipl Sustainability has three components *Development” is concerned with meeting the basic requirements,
‘Bridee Sustainability” focuses the changing behaviour and *“Maintenance Sustainability ' refers to social aeeeplanee or

' United Nations, Report of the World Commission on Environment and Development General Assembly  Resolution
427187, December 11, 1987,

Western Australia Council of Social Services (WASCOSS) Wikipedia.org

So Woaoderatt, Design for Social Sustainability, Social Life, London, 2011,

Adams, WAL, The Future of Sustainability © Re-Thinking Environment and Development in  the Twenty First

Centuny Report of the IUEN Thinkers Meeting, 29-31 January, 2006,
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ABSTRACT

Mathematical dislocation model has the ability to compute the deformation field due to well
defined arbitrarily shaped faults with arbitrary slip distributions. Explicit expressions for the
deformations at any point of two homogeneous monoclinic elastic half spaces with different
mterface conditions due to variable slip along a very long strike slip dislocation situated in the
lower elastic hall” space have been obtained. The interface may be perfect, stress free or rigidly
clamped. The variation of the displacements with horizontal distance from the fault trace due to
exponential slip profile is compared to study the effect of different types of interfaces between
amisotropic elastic media. The effect of anisotropy on the displacement field is also examined.
Numerically, it has been observed that the anisotropy has a significant effect on the displacement
and also the field is significantly influenced by the nature of interface.

Keywords: - Monoclinic, variable, interfaces, perfect, stress-free, rigid.

INTRODUCTION

The static deformation model is uscful to investigate geological fault movement and stress
distribution. It is observed from the study on carthquake and carth structurc (Stein and
Wysession[ 1]) that the earth is anisotropic in nature. The problems related to Dislocation Theory
have been investigated by many researchers, ¢.g., Steketee [2], Chinnery [3]. [4]. Maruyama
6] This theory has been proved very useful to study the ground deformation field produced
by faulting. The sites of most earthquakes are along geological faults which are surfaces of
material discontinuity in the Barth. The critical region where faulting often takes place is near or
at the interface boundary and this region may be visualized as a two-phase medium of infinite
extent and such a model has been used in both fundamental and applied research. Although, at
present, the half=space model is considered to be adequate for most applications, the two phase
model is useful in considering the effect of internal structural discontinuity in the Earth by
1ignoring the effect of free surface of the Earth.

The static deformation of semi-infinite elastic isotropic half space and two welded isotropic half
spaces due to a very long strike slip fault have been studied by many investigators (e.g..
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Vol 72 | No. 12 | Dec 2016 International Journal of Sciences and Research

Maruyama [6], Savage [7], Sharma et al [8], Rani & Singh [9]) and others. Garg et al [10]
obtained the analytical solutions for the deformation of an orthotropic layered half space due to
long strike slip fault. Madan et al [11],[12] studied the deformation due to different slip profiles
(uniform, parabolic, lincar, cubic and elliptic) along a very long vertical strike slip fault in two
phase orthotropic media.

Ting [13] derived the Green’s functions tor a two-phase monoclinic elastic media line force and
screw dislocations for anti-plane deformation for a monoclinic elastic medium., Singh et al | 14]
obtained closed form analytical expressions duce to uniform slip along a long inclined strike slhip
fault located monoclinic elastic half-space. By using the results of Ting [13], Kumar et al [15]
obtained the analytical solutions for the horizontal displacement due to uniform slip along a long
strike slip fault situated in two phase monoclinic elastic media. A problem with the uniform slip
model is that it predicts stress singularities around the edges of the fault. Furthermore. uniform
slip is sometimes not sufficient to explain complicated surface deformation i.e. uniform slip
models cannot be used in the near fields, e.g., vertical movements associated with strike slip
faulting.

[n order to study these phenomenons, it is necessary to consider the discontinuity which varies
over the fault plane, and in the particular, one that decreased slowly to zero near the extremities
of the zone of movement. The Nankaido Earthquake (1707) is a strike-slip fault with variable
slip. To deseribe an earthquake source, slip and fault length are the most readly observed
parameters. Effect of variable slip and stress drop can be studied more easily in two dimensions.
In two dimensions. a very long fault can be modeled as a distribution of elastic dislocation lines.
strike slip dislocations when slip is parallel to the long fault dimension and dip slip dislocations
when perpendicular,

Recently, Madan ct al [16] considered exponential slip along strike-slip fault situated in
monoclinic elastic half-space. It was observed that the anisotropy and various dislocations affect
the deformation significantly.

In continuation of our previous work, Madan et al [16], we have obtained the explicit expressions
for the displacements at any point of two homogeneous monoclinic elastic half spaces with
different interfaces duc to variable slip of exponential type along a very long strike slip
dislocation situated in the lower elastic half space. A particular case is also considered when the
upper media is orthotropic.

PROBLEM FORMULATIONS

Consider a homogencous anisotropic clastic infinite medium consisting of two clastic half-
spaces. The upper hall space y < 0 is termed as medium 11 and the lower half space y > 0 1s
termed as medium 1 with y —axis vertically downwards. The origin of the Cartesian coordinate

system oxyz is placed on the interface. We further assume that both clastic medium arc

homogencous and monoclinic with z = 0 as the symmetry plane. The interface ma.A'IEL':rlE STED

perfeet, stress free or rigid. _ 2 E
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Medium Il
v : + X
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L
i e (0<h<D)
Medium |
:l:

Fig. 1 Geometry of the Problem

We consider a vertical strike slip fault of infinite width L and infinite length (= < y < o) with
exponential variable slip along the fault which lies at the interface in the lower half-space. The
considered problem is anti-plane strain problem in which the displacement components (u, v, w)
in the direction of (x, ¥, z) are independent of z coordinate so thatu = v = 0, w = w(x, y).
Following Ting [13] and Kumar er al [15], when the contact between two monoclinic elastic half-
spaces is perfect. the displacements at any point duc to a long vertical strike slip fault situated in
lower monoclinic elastic medium along the fault are given by

e ' ;l ;“ b{=CV[x +£5(y — h)] (!":;]»? _ ;"flz}) —C,i'[eix + & (y — b)) (%_ %J +
af (G + 15 ds
(1)
o ;:f\ [ b(=Ci(x + &3y — £1h) = €Y [e2(x + &2y — £18) + &y (@Y — alm]};—%ds
(2)

where b is the slip on the fault which may be uniform or variable
Ri = (x+ &y —h)*+ (aa(y = )*
SZ=(x+&(y—h))?%+ (a.(y + h))?
Ri = (x + &1y — e1h)* + (a2y — a1h)*

. (1) (1) S (2) 1 ~(2)

€= = (5 [Cay'r €=~y /644
o 1 O YT 0y 1 _ ~(2) p~(2)

V1= Csg /Caar V2 = Cs5'/Cay

;= (n — €DV ay=(ra—e)"’ ATTESTED
(3)

(2)gptd)
I s e

- (n) — rrfinia(n) (n)* 1/2
= @@ S [Caa G55 — Cas |
——--—”'_'—
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PROBLEM SOLUTIONS
Let the slip b varies with depth D exponentially, say

b(h) = bU exp(—th) (4)

3
Or b(h) = by(1-2 + ) +0 (%) , (0 <h<D). (5)

2D?2
) h ; h ;
Since, = < 1, therefore we neglect the hlghcr power terms OfE (= 3). From (1), (2), (5) and using
Wolfram Mathematica, the explicit expressions for the displacement at any point of two-phase
monoclinic elastic media are obtained as:
i wil) =

!}“

= [y (1=yiY) = 2yi&X(yy = Y) +pfV?% + el X? -

rrl\
Y-y ¥ 'J—‘: J+E1 X1 3‘&

VEY? + (ef — af)(X + 2eY)?) tan™?

4y,

afX?) tan™

+ K(=2p7 (1 + 1Y) +2p6(X + 26, Y)(y, — Y) +

@y (X+2&,Y)
(X428, Y 2=y Y(1+Y )&, (X +2eY)(2Y+1)

- Xy, (1=-Y) —

£1X) log 1 O7HGX L Koy (X +26,Y)(r(1 = Y) +

{ \ "+l( Xe
tyitr ¥ e.man.ﬂ’u rrr Lrs +4£,:c1XY+4slal‘r'
(V=& (X426, ¥ )2 +ai X2 +4e, 0, XY +aedaly?

e(X +2&,Y))log tra (X + KX +26Y)]  (6)

and

(2) _ (1=K)by (¢ e :

w® = I;;ﬂ;};—,_m (2yf = 2y, (&, (&Y + X) + aqya,Y) + €2(&,Y + X)? +4e,aq.a,Y(eY + X) +
1

. _ D BN 1 Vi—&leY+X i —ayasy

ai(—(Y?(e5 —al) + 2&,XY + X?)) — e2a3¥?) (tan T
X 2

P i o U )+ (Ylaye, — ay65) — a1 X)(e1(&2Y + X) + aya,Y —

E1ltaY =ty lea Y+ X

y[ F,'t:V‘IX' ap Y —r‘ taiy? +?n(t X¥—2¢,8; rr1a25’~+a1X‘ z.slalrerYHlaz )] (7)
Y+ X )=ty et Y)2 +eF T Y2 428,08 'ﬂ—f‘a]hfn(r;}”ﬂr X2=2e,a a, XY +etady?

r1) log(=

PARTICULAR CASES:

a) When the medium 1 is orthotropic, we take & =0 in equation (6) and obtain the

corresponding displacement:

b ; - VX
H}[i]:?_]qu I{Z]/lll—yl‘}/)"}'yly‘) 2jtan ly e Y5+K( 2Y1{1+}’1 J
: ’ q (1-Y
}/-_}")—le tan ]ﬁ—\fﬂ){(l—}’)lo ﬁ—}ﬂz—+K\y1X(]+
Y_Jlog“;l:t - --+ Sy X (1 4+ K]

b) On taking K = -1 and K = lin cquation (6), the displacement of monoclinic ﬁ%\?‘fESTEE

space with a free boundary and with a rigid boundary can be obtained respectively. ! E
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NUMERICAL RESULTS AND DISCUSSIONS

[n this section. we wish to examine the effect of exponential discontinuity and anisotropic
parameters of an elastic medium due to a very long vertical strike slip fault of finite width and
infinite length situated in lower anisotropic elastic half-space.

For numerical computations, we use the values of monoclinic elastic constants for Dolomite
material Madan er af [12], orthotropic elastic constants for Olivine and Topaz material given by
Verma [17] & Love [I18] and transversely isotropic elastic constants for graphite & isotropic
clastic constants for glass given by Madan er al [13] . Define the dimensionless quantities
through the relations

Ww="% X= ,vzﬁ (9)

] %]
e Wi e i e X

I Fig. 2 Variation of the dimensionless displacement (w*)) with the dimensionless horizontal distance from the fault
trace (X) fory = 1.043, ¢ = —0.063, K = 0.644(Topaz-Dolomite)

Fig. 3 Variation of the dimensionless displacement (W (1)) with the dimensionless horizontal distance from the fault
trace (X) fory = 1.3696, ¢ = 0, K= 0.4581(Topaz-Olivine)
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I Fig. 4 Variation of the dimensionless displacement (w') with the dimensionless horizontal distance from the fault
trace (X) fory = 1, £ =0, K= -0.7179(Topaz-Graphite)

and define the material models as MITI-MI i.e, when Topaz is lying over Dolomite we represent as
Topaz-Dolomite ete. Figures (2)-(4) show the variation of dimensionless displacements for
Topaz-Dolomite model at different depth levels ¥ =0,Y =0.5,Y = 1,Y = 1.5 for unbounded
(K = 0) medium. stress free (K = 1) and rigid (K = —1) surface respectively with y = 1 and
= (.2

4
c

| Fig. 5 Variation of the dimensionless displacement (W) with the dimensionless horizontal distance from the fault
trace (X) fory = 1, e = 0,K = 0.99999 (Topaz-Glass)

== Inunz-Gilass
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Fig. 6 Variation of the dimensioniess displacement (W) with the dimensionless horizontal distance from the fault
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Tistprsmit i 'Lt Rt Bt1 i R liaind &

| Fig. 7 Variation of the dimensionless displacement (W) with the dimensionless horizontal distance from the fault
truce (X) fory =1

Lo examine the effect ol anisotropy, we compare the dimensionless displacements for models in
which upper medium 11 1s considered Topaz(Orthotropic) and varying the lower medium 1 as
Dolomite(monoclinic).Olivine(orthotropic), graphite(transversely isotropic) and glass(Isotropic)
i ligures (5)-(7) at different depth levels. From these figures it has been observed that as in the
lower medium the anisotropy increases the significant effect of anisotropy measured. From these
figures 1t is noticed that the difference in magnitude between the displacement due to Topaz-
Graphite(ortho-transversely isotropic) and  Topaz-Glass(ortho-iso) is greater than that of
ditference between the displacements due to Topaz-Dolamite(ortho-monoclinic) and Topaz-
Olive(ortho-ortho).  From the above figures, we observe that the displacement field is
significantly influenced by the nature of interface between two elastic half spaces and anisotropy
of the elastic medium,
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ABSTRACT, In this paper, we study the strong convergence and stability
of a new Lwo step random iterative scheme with errors for accretive Lips-

chitzian mapping in real Banach spaces. The new iterative schieme is more
acceptable because of nuich better convergence rale and less resirictions
on parameters as compared to random Ishikawa iterative scheme with

errors. We support our analytic proofs by providing numerical exam-
ples. Applications of random iterative schemes with ervors (o variational
inequality are also given. Our results improve and establish random gen-
eralization of results obtained by Chang [4), Zhang [31] and many others,

1. Introduction and preliminaries

The machinery of random fixed point theory provides a convenient way of
modelling many problems arising in non-linear analysis, probability theory and
for solution of random equations in applied sciences, With the recent rapid
developments in random fixed point theory, there has been a renewed interest
in random iterative schemes [5, 6, 7, 22, 23, 24. 26]. In linear spaces, Mann
and Ishikawa iterative schemes are two general iterative schemes which have
been successfully applied to fixed point problems [1. 2. 13, 14]. In recent. many
stability and convergence resnlts of iterative schemes have been established.
using Lipschitz aceretive (or pseudo-contractive) mapping in Banach spaces
[4. 8, 31]. Since in deterministic case the consideration of error terms is an
iportant part of any iterative scheme, therefore motivated by the work of
Cirié [11, 12, 13, 14. 15]. we introduee a two step random iterative scheme with
crrors and prove that the iterative scheme is stable with respect to T with
Lipschitz condition where 17 is an aceretive mapping in arbitrary real Banach
space.

Received June 10, 2015,

2000 Mathematics Subgect Classification, ATHOG, ATHOY, ATHL0, ITHHO. 6OF25, 17025,
LA EIEE

Key words and pheases, random iterative schemes, stability, acoretive operator, vario-
tional ineguality,
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Let X be w real separable Banach space and let . denote the normalized

duality pairing from X to 2% given by
Ha)={f e X" : (. [) = Izl IFN NS = Nz}, =€ X,

where X denote the dual space of X and
pairing between X and X,

Suppose (£, Z) denotes a measurable space consisting of a set € and sigima
algebra ¥ of subsets of €2 and €, a nonempty subset of X. Then random Mann
iterative scheme with errors is defined as follows:

(v} denote the generalized duality

Tnrr(w) = (1 — oy )an (w) + o, Tlw, T (w)) + 1y (w),
(1.1) for cach w € Q. n > 0,
where 0 < a;, <1, 20 : Q — C. an arbitrary measurable mapping and {un(w)}
is a sequence of measurable mappings rom Q to C.
Also, random Ishikawa iterative scheme with errors is defined as follows:
g (w) = (1 — oy )y () + on, T (w, v (w)) + g (W),
ynlw) = (1= 8n)xp(w) + 3, T(w, 2, (w)) + vy, (w).
(1.2) for each w € €2, n >0,
where 0 < a4, < 1. 20 : @ — C. an arbitrary weasurable mapping and
{un()}, {0} are sequences of measnrable mappings from Q to €.
Obviously {r,(w]} and {y,(w)} are sequences of mappings from £ into €.
Also, we consider the following two step randou iterative schewe with crrors
{an ()} defined hy
Tnpe(w) = (1 — an)yn (W) + anT(w, yn(w)) + u, (w).
Ynlw) = (1 = Ba)rn(w) + 3.7 (w, 2, (0) + v ().
(1.3) for ench w e Q, n > 0,
where {u,(w]}, {v,(w)} are sequences of measurable mappings from ) to €.
0<ay. 8, < 1land w0 — C, an arbitrary measurable mapping.
Remark 1. Putting 4, = 0, v,, = 0 in (1.3) and (1.2). we get raudom Maun
iterative scheme with errors,
Now we give some definitions and lemmas, which will be used in the proof
of our main results.
Definition 1.1. A mapping ¢ : Q — € is said to be measurable if ¢~ {(BNC) €
¥ for every Borel subset B of X,
Definition 1.2, A [unction F: £ x (" = (" is said to be a random operator if
F(.x): Q= C is measurable for every o € (.
Definition 1.3. A measurable mapping p: Q — s said to be random fixed
point of the random operator 72 Q0 x (" — C.if Flu,plw)) = plw) for all
wE £
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SOME STRONG CONVERGENCE RESULTS 1449

Definition 1.4. A random operator # : Q) x €' — C is said to be continuous
if for fixed 1w € Q. Flw..): C =  is continuons.

In the sequel, T denotes the identity operator on X, D(T) and B(T) denote
the dowmin and the range of T, respectively,

Definition 1.5. Let 7°: Q2 x X — X be a mapping. Then
(i) T is said to be Lipschitizian, if for any oy € X and w € €. there exists
L > 0 such that
(1.4) 1T () = T, )|l < Ll =yl
(ii) T is said to be nonexpansive, if for any w.y € X and w € Q,
(1.5) [[7(w, @) = T(w. )l < lla—yll-
(i) 77 : 2 x X — X is pseudo-contractive [8] if and only if for all r,y €
Now e @ and for all » > 0 the following inequality holds:
(1.6) lae = yll < (L4 #)e = ) — (T (w.2) — T, y))||
or equivalently if and only if for all 2.y € X, there exists j(ox —y) €
Je — y) sueh that
(Tw =Ty, j(x —y)) < Jle -yl
(iv) T is said to be accretive [8].if and only if for all 2.y € X and for all
r = 0 the [ollowing inequality holds:
(1.7) e — gl < |l =y + #(T{w.c) = Tlw.yg))||
or equivalently it and only if for all v,y € X, there exists jlor — y) €
J{a = y) such that
(Tar =Ty, jle—y)) = 0.
(v) If T is accretive and R(I + AT) = X for any A > 0, then T is called
m-accretive [20, 32].

Aceretive mappings are connected with nonexpansive mappings. It is well
known that if 7" is accretive [10], then (/ + 1)7" is a nonexpansive single-
valued mapping from R + A7) to D(T). The interest in accretive mappings
also stems frow the following facts:

(a) If T is acerctive. then solntions of the equation Ta = 0 correspond to
the equilibrinm points of some evolution systems [29)].

(b) Many physical problems arising in applied mathematics can be mod-
elled in terms of initial value problem of the form:
i
df
(¢) Their connection with the well-known class of pseudo-contractive map-
pings (1" is pseudo-contractive il and only il I = T is aceretive)

= =Tuw.x() =g, where T is an aceretive mapping.
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Suppose that X is a real reflexive Banach spauce, T, A X = X, g0 X = X~
are three mappings, and ¢ @ X* = R U {cc} is a function with a Gateanx
differential dyp, Then u is a solution of a variational inequality if for any given
f e X, there exists n u € X such that

glu) € D(Og),
(1.8) (Tu — Au — fov—glu)) = @(ylu)) —o(w) forall ve X~

Lemma 1.6 (|11). Suppose X 2s o veal veflevive Banach space. ilgog @ N — o
1s a mapping, then the followmyg conclusions are equivalent:

=

2" £ X s a solubion of varwlional melusion problem (1.3):
(it) 2" € X s a fived pont of the mapping S : X — g%,

Sla)=f—(Te—Ar+dalgle))) +x
(iii) «* € X is u solution of the equation [ = Ta — Ar + dg(g(x)).

Lemma 1.7 ([20]). Suppose X is an wrbitrary veal Banoch space, 1 D(T') C
X — X s aecerelive and eontinuons, and D(T) = X. Then I' 13 m-accrelive.

Lermmma 1.8 ([32]). Suppose X is an arbitrary real Banach space, T : D(T) C
X — X s an me-accrelive mapping. Then lhe equalion ©r + Tz = [ has a
unigue solution in D(T) for any f € X.

Lemma 1.9. Let x,(w) be a sequence of real numbers satisfying the following
inequality:

Wiy Oy ey M2k

where 7, > 0, o, =0 and linl a,=0.0<d< 1 Thenx, —=0asn — nc.
Definition 1.10 ([1]). Let 17: & < €' = € be a random operator. where € is
i nonempty closed convex subset ol a real separable Banach space X. Let rq :
() — (' be any measurable mapping. The sequence {0, o (w)} of measurable
mappings from Q to €. for n = 0.1,2,... generated by the certain random
iterative scheme involving a random operator T is denoted by {7, 2, (w)} for
cach w € €, Suppose that x,(w) — p(w) as n — oo for cach w € Q. where
pe RF(T). Let {pa(w)} be any arbitrary sequence of measurable mappings
from © to €. Define the sequence of measurable mappings k, @ 2 — by
b (w) = dipn(w), {T,pa(w)}). If for cach w € Q, k,(w) > 0asn = o0 hmplics
po () = plw) as n = ~c for cach w € 2, then the random iterative scheme is
said 1o be stable with respect to the random operator 7',

2. Convergence and stability results

i this section. we establish the convergence and stability results of revised
two step radom iterative scheme with errors (1.3) and random Ishikawa iter-
ative schome with errors in real Danach spaces.
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SOME STRONG CONVERGENCE BRESULTS 151

Theorem 2.1, Let X be a real Banach space, T - Qx X — X he a Lipschitzian
vandom apping with a Lipschitz constant L > 1, such that (=T) is aceretive.
Let {o(w)} be the vandom wterative scheme with errors defined by (1.3),with
the following restractions

(i) 0< o<, — L1+ f_)ni —AulL=1)< 1 (n=0).

(i) lim wnler) =0, m v, (w) = 0.

T —s o =00 ¥

Then

(1) the sequence {o (w)} converges sirongly to o unique fized pornd plw)
uf ',
[H}I th Stperne J,.J',,[u'}}l is stable. Moveover, lim Paltt) = J||H_H'}I ."mj]lnfu 5
=

lm dey, () =0

Proaf. (T) From (1.3), we have

(Easr(w) = plw)) = an (T'le. 2 (@) = Tl plw)))
(2.1) = (1 = ovy My lte) = plu))=evy (T (o, ey (10)) = Tlow, gy (w0)) + g (00).
Since (=T) is aceretive and Lipschitzian mapping, so using (2.1) and (1.7), we
vot

1 a0 — )|

< gy () = plw) = o (T{w, 2y (w)) = 1w, plw)))|
= [[(1 = exp ) (o () = plar}) = (T (w1 (@) = T gy, (w))) 4y () |
(2.2) <1 —cn )|t () = pla) || o 12 (0 tn (o)) =T (wry &gy (@) ||+ | (u) |-
Now, using Lipschitz condition on 17, (1.3) implies
(L (g et (1)) = (e, gt ()|

< Lllwnpr(w) = yn(w)]|

< Loy ||lynloe) = 1lu gy (w))|| + Lijug (w))

< Lol (o) = plod]] 4+ Lo [T (e gy = plad|] + Lo ()]
(2.3) = Lov (1 4+ L) gntne) = plae ]| + L, ()]
Also, from (1.3), we have the following estimate:
[l (10) = p(ur)|
(1 = B)llen(w) = ple)|] + 3 |l1 (w25 (w0)) = plaw)|| + ||on ()|
(1 =A&) lwn(w) = plae)|| + 8, Ll|wn (o) = pla)]| + [lon, ()|
(2:4) [L+ 8, (L - U|§I.r',r( ) — pla)]| + |fo ()]

1A 1A

Using inequalities (2.2)-(2.4), we arrive at
a1 () = plaw) |
< (L =a )l + 2. (L= D]l (w) = plw)]] + (1 = ay)|lva(w)]]
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0L+ L)[1 + By (L — 1)]|fr, () = Pl + (1 + o, L)1, (10) |
+ a2 LA+ LYo ()]

S [+l = Dll=a,+alL(1+1L)]
[T+ L+ 2]l () |

fru(w) =plw)|| + (14 L) [|un (w))

< [V ={aw—al L2(14L)-8,(1~ Dl (w) = plw) ||+ (14 L) ||, (w)|
+ [L+ L+ L)) [[on(a2)]
(2.5) < [I — allay, (w) - plw)ll + (1 + LYu, (w)]| + [1+ L1+ I ey ()|
Now, put [1 — n] = 4§ and [V L0+ DYl )| + (1 + ) (w)| = a,,.
Then (2.5) reduces 1o
2t slw) — plw)ll < 8]|a,{w) - plu)l| +o,.

Therefore, using conditions (i)-(ii) and Lemma 1.9, wbove inequality yields
B [y qq () =p(w)|| = 0, that is {n ()} detined by (1.3) couverges strongly

1
H—%2C
to a random fixed point plw) of T,

(I1) Suppose that {p,(w)} C X, is an arbitrary scaquence,
kyfw) = ||prga(w) = (1 = o, Yo () — o, T, gufw)) — w, ()],

where

) = (1 = 8,)pa(ur) + 8,7 (. (1)) 4 vy (w) and li!}; by () = 1.

Then
(lPns 1) = Tl plee))|
= lpnsa () = (1= o )gu(w) — o T(w, gu(w)) = wa(w)]|
+ (1 = an)gu(w) +a, T(w. g, (w)) + ty(w) = T(w. plw))|
(26) = ku(w) + I = T, plu))]l,
where
(2.7) ; tio= {1 = ay)gy(u) 4 o T (e gy () + g ().

Then using (2.7). we Love
(o) = plw)) — o, (Tlw,ry) = Tlwplw)))

= (1 = oy )gn(w) — plw)) — an (T (. P () = L. g (10))) + wn ()
which further huplies
e () = plw)||
e () = pler) = o (T (. ey () = Tl plu) Nl
(L= Mg Gy = plae) )= o (T (. vy () = T, Aulre))) + g, ()|
(2.8) < (1=l (g (w0) = plu)) || + o [ (T ey 7 () =T, tre (10) ) )|+ [t (22) ).

1A
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Now, similar to (2.3) and (2.4), we have the following estimates:
(2.9)

(7 (s ra(w)) = Tlw, g (w)]] € Lo (1 + L) |lgn(w) = plw)|| + Lflwn(w)]].
(2.10)

g () = pCe)ll < [1 4 Bu (L= DIl (pa () = plw))|| + lon (w)]).
Using estiinates (2.8)-(2.10), we arrive at

() — pas)|
< [F Ao = aGL2(1 + L) = 3u(L = DH(pu(w) = p(w))]|

(2.11) + (1 + L) ()| + [+ L(E+ L))oy, ()]

Substituting (2.11) in (2.6), we obtain
(i () = T (e plae))||
< k() + (1= {a, —al L1+ L) = 3,(L = DYI(pa(u) = plu))ll

(2.12) + (0= Ll Ced ]|+ 1L+ LOL+ L)) e ()]
Hence again using Lemma 1.9, together with conditions (i)-(ii), (2.12) yields
lim py(w0) = plw).
h_"-lx:lilt:‘!'(*.r{rl'{-". the iteration (1.3) is T-stable,

Further, lot ”[i_1’1l pn(w) = plw), then nsing (2.11), we have

ey ()
= [paprlw) = (1 = a)gu(w) — a, T, g (w) — uy (w)]|
= |l () — vy, ()|
< |l () = plan)|] + |[r, () — plaw)]|
< lpale) = pla)fl + [1 — o — 0 L1 + L) = B, (L — DHI(po(w) = plw))]|

+ (1 + L)[Junlw)| + [1+ L(1 + LMlwn ().

which huplies i &, (w) = 0. This completes the proof of Theorem 2.1, 0O
0L

Putting 4, = 0, in Theorem 2.1, we hiave the following obvious corollary:
Corollary 2.2, Let X be a veal Banoch space, I 0% X — X be a Lipschitzinn
random mappong widho o Lipsehitz constant L=, sueh that |{ 1) 15 aecrelive.

Let L (w) ) be the vandom Mo tberutioe seheme with evrors defired by (1.1)
with the follownng condilions:

() D<a<a, = L1+ Lot <1 (n=0).
(ii) lim wn(w) =0,
Then
(1) the sequence {@,(w)} converges strongly to o unique fized point p(w)

of T.
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(L) the sequence Lo, (we)}oas stable. Mopeover, i p,(w) = plu) emplies
~x

limy Ay, () = 0.
Nn—ok
Theorem 2.3. Lel X be a real Banach space, T : Q x X — X be Lipschitzian
random mapping with a Lipschitz constant L > 1, such that (=T) is accretive.
Let {w, ()} be the random Ishikawa iterative scheme with crrors defined by
(1.2) wnth the following restrictions:
(i) 0 < o< vy — g, L1+ L)(ev, + B30) = LIL? = DBy < 1 (02 0).

() Hmow,(w) =0, lim e, () =0,
T L 3 =
Then
(1) the sequence {r, (w)} converges strongly to a unique fized point p(w)
uf T'.

(I1) the sequence {@, (1)} ds stable. Morcover. lim py,(w) = plw) implies
L ke &

i by () = 0.

Proof Using (L.2), we Lave
(e (0] = plae)) — e (00 ey ) = 100w, plar)))
(2.013) = (I=ag ) lenle)=plee) )=o) =1 g () + 1, (02)
Using (2.13) and (1.7). we get
[ () —plw)]
< 2 () = plan) — e (T (10, gy () =T (1, pla))) |
= |1 =, ) (a0) = ple) )= oy (T (e iy o1 (0)) = T (g () ) 42, ()|
(2.14) < (1=an)llan () =plo) |+ o I T (e, s (w}) =T, g () ||+ |10 (20) ).
As T'is o Lipsehitz mapping with constant L, so we have the following estimatoes:
12" oz () ) = 2 (s g () )|
< Ll i(w) — go lw)|
(215) < L1 —an)|lwn ()= ym ()| + o |2 (e gn (0)) = g ()| [l un (0],

7 (e, Cana())) = g (20|
< (U4 L)y (w) = plw)]]
< (U4 L)1 = )l (w) = plun)]l + Su 1T (w, (w0 (w0))) = 2, (w) )
= e L

(2.10) < 1+ LY+ 0L = Ldallentie) = plee)ll + (1 + L){[en (w)]

and
[|ep ) = gnlu)|| < Bullay () = T, (ap{w)))| + o ()]
(-?JT} E (l + L}Bfr ”-"'u(“‘] = P[“')H s |“’rl ('”')H.'
'-___-_...——-
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Usingg (2.06) and (20170, (2.15) vields
(T, e (e )) = Flees g (0 1) ]
< LML+ L)L =), + LU+ L)+ (L= 14, ], } e () — pla)|
+ L(1 + Lo fvw () || + L[, (0]
< [L(L + L)(oy, + 8,) + L~ Dy, B ]| () = plw)||
(2.18)  + L{1 + L)lon Ce)|| 4+ Ll en (e}
Substituting (2.18) into (2.11). we arrive at
s (20) = plaw)]
(1= {an—an L{1+ L), + 30 ) = LIL* = Va8 I (2 (w) - ple))|
+ L1+ L)ooy |log(un]] + (L 4+ Leag )|, ()|
< [Il—{ay—o L1 +L)(ay+ 8, V= L{ L% — D)o By H g () — p(w) )|
+ L1+ L)Jea ()l + (1 +L) laa(w) ]
(2.19) < [L=a]|ltea () = plu))|| + L+ LYo ()| + (1 4+ L), ()]
Now, put [I = a] =d and L{1 + L)len Ca)ll + (1 + L)fJu,(w)|| = a,..
Then (2,19) rednees to
[ Cor) = pleo)ll < dllay () - pla)] + o,
Therefore, using conditions (=00) and Lennua 1.9, above inequality yields
i (e gt = plw]] = 00 that s {o (w) ) detined by (1.2) converges strongly

to a rando fixed point p(w) of T
(11} The proof of this part can hold on the same lines as in the proof of
part (11) in Theorem 2.1, O

Now, we demonstrate the following example to prove the validity of our
resulis. :

Example 2.4, Let © = [0,2] and ¥ be the sigma algebra of Lebesgue's mea-
surable sibsets of €. Take X = R and deline random operator T from £ x X

to N oas Tlw.r) = w — . Then the measurable mapping £ : Q — X delined
Iy Elw) = %, for every w € 1 serve as a random fixed point of T It is
casy Lo see that the operator T is a Lipseliitz random operator with Lipschitz
LR e T el i gl 1

constant L = 1 such that (=7 is aceretive and «, = FERALD o = AL
sl = il = w;—'-;—ﬁ satisfies all the conditions (i)-(ii) given in Theorem 2.1,

and Theorem 2.3,

Remark 2.5 New vandom iterative schome is more aceeplable as compared Lo

randorn Ishilowa iterative schetne with crrors due to following reasous:
(1) o deterministie case, [or aeerenve mappings new wo step iterative
with errars has better convergence rate as compared to Ishikawa itera-

tive schieme with errors.
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(2] For convergence. weak control conditions on parameters are reguired
in new two step random iterative with errors as compared to random
Ishikawa iterative scheme with crrors.

Proof. (W lat Ty =1—w, L=1 0y, = i .]; T it = .||t.r_|'-' g 4l = |!f',r|i =
i

o - Vhen taking initial approxinstion . L. comvergence of new two step
aned Ishikowa itorative schemes with crrors ta the fixed point 0.5 of operator
T is showar in the following table, From table, it is obvious that new two step
iterative scheme with errors has mineh hetter convergence rate as compared o
Ishikawa iterative schieme with errors.

Nuniher of | Sew Gwe step iterikive | Tshikaown tterative sehienie
’7 iteratinns seheme with errors with errors
[ N Tra | ewin T L
i T |BERERE) " 10707
T | =T 3308 | 2.1Har TR
[~ 2 Lo | sl
L] [ I
i UatEas | LansT
] D LIDST | 0072171
[H Ts201 [ 08
H LLTG003S | (0 T49250
~ f G 167815
o I ITHT | G4593
1 0,508 12 11505001 1 9707
- -
| I
=== e
1t HARAITT
o 3
| ) TR
s WA
| Il BT TR R L Dozs |
'_T .;T.‘I-'Il'l'lll\ | obiwmg [IRiH
T R T B A TioeTs
I R R T R
= LI G TN RTE LI LR A (1, 858000
1N ARG | o0 IR | NATANT
B0 | D5 0.5 B3NS L8677
T 0.5 0.5 IR (L AU000 |
0.5 .5 [T B DA T
0.5 0.5 OGNS [T
05 0.5 NAG9990 | (LA0000T
B 0.5 0.5 0400900 | 0.800001
0.5 1.5 (TR A0, 500
0.5 0.5 (TR (IS
0.5 L5 11499490949 [T
| 1.5 (U8 1, L0 (LA0000 T
| 0.5 1.5 AT DR
| 0.5 0.5 [T 115
|05 0a 0.5 0.5
| |
= | |
(2) 1 we take L =1, oy = ]l ! . then both conditions
RIS AT A TAEEA

0 < oy — LA+ D)2 = 35(L = 1) < 1 and 0 < try, — a, L1+ L)y + 83) =

4"."‘1""! Viev,, oy < 1o satishied.
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But il we take L =1, a, = —-—r,l_'lm. and &, = ﬁ then 0 < o, — L*(1 +

Lyai — d,(L = 1) < | is satistied but 0 < o, —an L{1 + D)oy, + 8,) — L{L2 =
Liay 3 < 1. is not satisticd.
S0

ity — o1 - B0 A B0 = LIE* =1 el € ¥

is stronger condition than

B o= B2 B0 = A E = 1) £

3. Applications

In this section, we apply the random iterative schemes with ervors to find
solution of nonlinear random variational inelusion problem.

Theorem 3.1, Let 7.4 : Qx XN — N, g: Qx X = X* wre three random
operators on real veflevive Banach space X and @ 2 X* — RU{oc}. a function
with contoons Gateawe differential Oz, such that T—A+dgog—1: Qx X — X
is o Lapselitzio aceretive random operator with a Lipselhitz constant L > 1.
Defivie wvundon operator § @ Qx X — X by S(w,e) = f=(T(w,s)— Alw.x)+
dalyla ) +oelw), wheve e X is any given point. For any given ro(ie) € X,
fet Lag (u)} be the random. tterative scheme with errors defined by
Wty (o) = (1 = oy )ys () + e, S, yn(w)) + 2y (aer),
Unlttr) = |:] — )y r..”'.} i '.-}I'I“j.(“l'".JJ{”.J.] = 7'n{“'}~
(3.1) Sor each w € 2,0 =0,
where Lo (wd b {ea e} are measurable sequences o Xownd {oy, b {0, are
sequenaes o |1, L setasfyrng the followag conditions:
(3 0 < < ag = B0 # B =3 (5= 1< L d® =1 %E

() hne s o) o i ey, (0e) 1)
| =¥

" .

Then Hie derative sehome (301 converges to the unigue solufion o (w) € X af
the followng nonlivear vaviational snelusion problem

glau) e Diay).

(Tunw) — Alwn) — £, —glwsu)y 2e(glwsw)) = glv);
(3.2) Jor all ve X".
Proaf. We shall complete the prool in fwo steps. In the first step, we show that
nonlinear variational inelision problem (3.2) has a unique solution x* € X. In

the second step, we show that iterative scheme (3.1) converges to the unique
solution.

Step Lo As T — A4 deeg = 1 is a Lipschitzian aceretive mapping, so by
Lemwnna 1.7, 1= A+ dgoyg—1is me-aceretive, Henee by Lennna 1.8, for any
S € X, the equation

J=Tlw. ) = Alw, x) + do(glw. 2)) — Hu, ) + 2(w)
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lins o nigne solntion o (w) € X. Then, using Lemma 1.6, #*(w) € X will
be the solntion of nonlinear variational inclusion problem (3.2) and it is fixed
point of S.

Step 20 Now sinee 1'— A+ dgog —1: 0 x X = X is a Lipschitzian aceretive
operator with a Lipschitz constant L > 1.so 8 : Q x X — X is also a Lip-
selitzian mapping with Lipschitz constant LY = 1+ L. such that (—-S) is an
acerelive operator, Now, replacing 0 by S in (1.3), L by L* in condition (i) of
2.1, it
is casy to seo that the random iterative sehewe (3.1) converges to the unique

Theoren 2,1 and Tollowing the same steps as in the prool of Theorem

solution & N ol nonlinear varviational inclusion problem (3.2) !

Letting ¢ = 0wyl vyl = 00 in Theorem 3.1, we can obtain the
following theorem,

Theorem 3.2, Let T A x XN — X, g: Qx X = X™ are three random
operators on real reflecive Bunach spoce X such that T— A—T:Qx XN =5 X
is a Lipsclitzian acerelive operator with a Lipschilz eonstant L > 1. Define a
random operator § - Q x X = X by S(uer) = [ = (T{w,x) — Alw.r)) + x{w),
where [ e X s uny geoen point. For any quen oylw) € X, det {a, (w)} be the
random tlevative sclieane defined by
o) = (1 = oy (w) + e Sws ya(w)).

(3.33) tnliw) = (1 = 8 )en(w) + B, 50w, 2 (1)) for each we Q,n 20,
where {aq b {3, ) are sequences in [0, 1] satisfying the following conditions:

(i) 0 < <a,— )'.“'Ll T In',"I - AL =1 <1,

Then the dtevative scheme (3.3) converges lo the wnigue sofulion o € X of

nonlincar vartational sneguality
(L) — Alsan) — fou glwow)) 20 forall ve X°.

Theorem 3.3, Lot 14 Q0 x N —= XN, g0 Q « X = X* are three random

operators o oreal v flevoe Bavack space X ownd o0 X —= RU{ 0}, @ function,

ekl continaous Gatoaue differcntial dz, sach that T—."-O-H-,."Gy—f RN = X
s o Lapsehilzian acerclive operator with o Lipsclalz constant L > 1. Define
urn rondorn operatar S 0 Q x X — X by S(we.e) = f = (L(w,a) — Alw, x) +
Ae(glus o)) ) +atu), where f € X s any given poind. For any given volw) € X,
let e, (w)} be the vandom Tshikawa iterative scheme with ervors defined by
et () = (1 = ag )y, () + o0, S, ym (W) + s (10),
gl ) = (1 = dy )y lw) + 3,8 (w,wq (w)) + vy, (),
(3.4) for cach we Q.n =0,
where Lu o)} fealw)) are measurable sequences in X and {ov, }, {8} are
sequertces o (UL satisfying the followmy conditions:
(Y O o ay—eph* {1 L) 0w + 8] = B 5= Uanlls < 1.
(it) T g lwe) =0, [ e, (i) =0

=X

73
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Then the dterative scheme (3.4) converges fo the wique solution +* € X of

nomlinenr varintional inctusion problem (3.2},

FProof, Using Theorem 2.3 and following the same arguments as in the proof
of Theorent 3.1, 0t is easy to show the randow Ishikawa iterative scheme with
ervars (3.1) converges to the ninigne solution #* € X of nonlinear variational
inelision problem (4.2). O

Theorem 3d: Let T Al x X =6 X, g Q% X =5 X wre thiree random
operators ow real reflexwe Banach space X and ¢ 1 N* = RU{co}, a funclion
with continuons Gateawe differential dg. suelh that T— A Fioy—f:OxXN = X
s Lipsehitzian acerctive operator with a Lipselitz constont L, = 1. Defin
a randons operafor 8 00w XN N by Slusal = [ = (Tlwor) — Alw.x) +
dlgluc i i+atw ), whive € X s inny given poct. For any geoen colo) € X
et : O 4 ! ':' f the vavidown Mann iberabeoe sedicing with ervors ‘-.I'f-fn.-..rrf h_.r;

Tptw) = (L=, )a (w) + e, 80w, e () + g, (w).

LR

(3.5) for cach w € Q. n >0,

where {u, (0} 1 a measurable sequence in X and {a,} is a sequence in [0.1]
satisfyinyg followng conditions:

i ’ ;i ) 2 .

() 0 <<y, = L31 + L)a2 < 1.

)y o oy, () )
" -

Chew the aterative seheme (3.5) converges (o the unique solulion r* € X of
nonlinear vartalional inclusion problem (3.2).

Remark 3.5. Results involving random Ishikawa and Mann iterative schemes to
solve variational inelusion problem (3.2) or variational inequality can be proved

as special cases of Theorems 3.1-3. 1

Remark 36 Our results jee peneralization. improvement and extension ol some
ol the well known results in the following sense

Lo Thesrems 301 and 3.3 are randomization of Theorem 3.1 of Chang [1]
as well as Theorem 2.0 of Zhang [$1]. using new convergence technigue
and woak restrictive condition on paramceters. In fact in Theorems 3.1
aiel 3.3, o, andd B, need not converge Lo zero as in Theorem 3.1 of
Chang 4] and Theorem 2.1 of Zhang [31].
Theovem 3.3 holds in retlexive real Banach spaces, whereas Theorein 3.1

of Chang [1] has been proved in uniformly smooth Banach spaces.

3. T Theorems 3.1 and 3.3, unlike in Theorem 3.1 of Chang [4] and The-
orewn 2.1 of Zhang [31].the boundedness of range of S or Sa,, and St
is ot required.

Lo The Tshikawa iterative scheme has been veplaced with more general
raudon Ishikaws iterative schene wirh errors and morve acceptable new

two step random iteralive scheme with errors.
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5. Stability of more nceeptable new two step random iterative scheme with
crrors hag heen proved in Theorem 2.1,

6. Theorem 3.0 of Chang [1], generalizes and improves the results in [16,

7. 18, 21, 27, 28, 30]. so Theorems 3.1 and 3.3 extend and establish

random generalization of the work of [16. 17, 18, 21. 27, 28, 301
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lins o nigne solntion o (w) € X. Then, using Lemma 1.6, #*(w) € X will
be the solntion of nonlinear variational inclusion problem (3.2) and it is fixed
point of S.

Step 20 Now sinee 1'— A+ dgog —1: 0 x X = X is a Lipschitzian aceretive
operator with a Lipschitz constant L > 1.so 8 : Q x X — X is also a Lip-
selitzian mapping with Lipschitz constant LY = 1+ L. such that (—-S) is an
acerelive operator, Now, replacing 0 by S in (1.3), L by L* in condition (i) of
2.1, it
is casy to seo that the random iterative sehewe (3.1) converges to the unique

Theoren 2,1 and Tollowing the same steps as in the prool of Theorem

solution & N ol nonlinear varviational inclusion problem (3.2) !

Letting ¢ = 0wyl vyl = 00 in Theorem 3.1, we can obtain the
following theorem,

Theorem 3.2, Let T A x XN — X, g: Qx X = X™ are three random
operators on real reflecive Bunach spoce X such that T— A—T:Qx XN =5 X
is a Lipsclitzian acerelive operator with a Lipschilz eonstant L > 1. Define a
random operator § - Q x X = X by S(uer) = [ = (T{w,x) — Alw.r)) + x{w),
where [ e X s uny geoen point. For any quen oylw) € X, det {a, (w)} be the
random tlevative sclieane defined by
o) = (1 = oy (w) + e Sws ya(w)).

(3.33) tnliw) = (1 = 8 )en(w) + B, 50w, 2 (1)) for each we Q,n 20,
where {aq b {3, ) are sequences in [0, 1] satisfying the following conditions:

(i) 0 < <a,— )'.“'Ll T In',"I - AL =1 <1,

Then the dtevative scheme (3.3) converges lo the wnigue sofulion o € X of

nonlincar vartational sneguality
(L) — Alsan) — fou glwow)) 20 forall ve X°.

Theorem 3.3, Lot 14 Q0 x N —= XN, g0 Q « X = X* are three random

operators o oreal v flevoe Bavack space X ownd o0 X —= RU{ 0}, @ function,

ekl continaous Gatoaue differcntial dz, sach that T—."-O-H-,."Gy—f RN = X
s o Lapsehilzian acerclive operator with o Lipsclalz constant L > 1. Define
urn rondorn operatar S 0 Q x X — X by S(we.e) = f = (L(w,a) — Alw, x) +
Ae(glus o)) ) +atu), where f € X s any given poind. For any given volw) € X,
let e, (w)} be the vandom Tshikawa iterative scheme with ervors defined by
et () = (1 = ag )y, () + o0, S, ym (W) + s (10),
gl ) = (1 = dy )y lw) + 3,8 (w,wq (w)) + vy, (),
(3.4) for cach we Q.n =0,
where Lu o)} fealw)) are measurable sequences in X and {ov, }, {8} are
sequertces o (UL satisfying the followmy conditions:
(Y O o ay—eph* {1 L) 0w + 8] = B 5= Uanlls < 1.
(it) T g lwe) =0, [ e, (i) =0

=X

73

ATTESTED

N

Sat Jinda Kalyang
Kalanaur (Rohtak)

.__...--——-E

Principal
College
Haryana



SOAME STRONG CONVERGENCE RESLILTS 1549

Then the dterative scheme (3.4) converges fo the wique solution +* € X of

nomlinenr varintional inctusion problem (3.2},

FProof, Using Theorem 2.3 and following the same arguments as in the proof
of Theorent 3.1, 0t is easy to show the randow Ishikawa iterative scheme with
ervars (3.1) converges to the ninigne solution #* € X of nonlinear variational
inelision problem (4.2). O

Theorem 3d: Let T Al x X =6 X, g Q% X =5 X wre thiree random
operators ow real reflexwe Banach space X and ¢ 1 N* = RU{co}, a funclion
with continuons Gateawe differential dg. suelh that T— A Fioy—f:OxXN = X
s Lipsehitzian acerctive operator with a Lipselitz constont L, = 1. Defin
a randons operafor 8 00w XN N by Slusal = [ = (Tlwor) — Alw.x) +
dlgluc i i+atw ), whive € X s inny given poct. For any geoen colo) € X
et : O 4 ! ':' f the vavidown Mann iberabeoe sedicing with ervors ‘-.I'f-fn.-..rrf h_.r;

Tptw) = (L=, )a (w) + e, 80w, e () + g, (w).

LR

(3.5) for cach w € Q. n >0,

where {u, (0} 1 a measurable sequence in X and {a,} is a sequence in [0.1]
satisfyinyg followng conditions:

i ’ ;i ) 2 .

() 0 <<y, = L31 + L)a2 < 1.

)y o oy, () )
" -

Chew the aterative seheme (3.5) converges (o the unique solulion r* € X of
nonlinear vartalional inclusion problem (3.2).

Remark 3.5. Results involving random Ishikawa and Mann iterative schemes to
solve variational inelusion problem (3.2) or variational inequality can be proved

as special cases of Theorems 3.1-3. 1

Remark 36 Our results jee peneralization. improvement and extension ol some
ol the well known results in the following sense

Lo Thesrems 301 and 3.3 are randomization of Theorem 3.1 of Chang [1]
as well as Theorem 2.0 of Zhang [$1]. using new convergence technigue
and woak restrictive condition on paramceters. In fact in Theorems 3.1
aiel 3.3, o, andd B, need not converge Lo zero as in Theorem 3.1 of
Chang 4] and Theorem 2.1 of Zhang [31].
Theovem 3.3 holds in retlexive real Banach spaces, whereas Theorein 3.1

of Chang [1] has been proved in uniformly smooth Banach spaces.

3. T Theorems 3.1 and 3.3, unlike in Theorem 3.1 of Chang [4] and The-
orewn 2.1 of Zhang [31].the boundedness of range of S or Sa,, and St
is ot required.

Lo The Tshikawa iterative scheme has been veplaced with more general
raudon Ishikaws iterative schene wirh errors and morve acceptable new

two step random iteralive scheme with errors.
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5. Stability of more nceeptable new two step random iterative scheme with
crrors hag heen proved in Theorem 2.1,

6. Theorem 3.0 of Chang [1], generalizes and improves the results in [16,

7. 18, 21, 27, 28, 30]. so Theorems 3.1 and 3.3 extend and establish

random generalization of the work of [16. 17, 18, 21. 27, 28, 301
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Abstract

I this work, strong convergence and stability results of a three step randomm iterative scheme with ervors
for strongly pseudo-contractive Lipschitzian maps are established in real Banach spaces. Analvtic proofs
are supported by providing munerical examples.  Applications of random iterative schemes with errors
to fud solution of noulivear vandom equation are also given. Our results iprove and establish raudom

neralization of results obtained by Xo and Xie [Y. Xu, F. Xie, Rostock. Math. Kollog., 58 (2004). 93-100].
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1. Introduction and Preliminaries

The machinery of fixed point theory provides o convenient way of madelling many problems arising
in now-linear analysis. 1:1'u|m|:ili1\' theory aud for o solution of random cquations in applied sciences. see
(4. 9. L1, 12, 15, 17. 18, 20, 21, 25. 27, 29, 30. 31. 33. 34, 35, 36, 38. 39, 40] and references there. With
the developments in ‘mrlum fixed point theory, th:n has been a renewed interest in random iterative

schemes(2, 3, 7, 8, 10]. In linear spaces, Mann and Ishikawa iterative sclienes are two -'csL‘TTﬁgTE]
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schemes which have been sueeessfully applied to fixed point problews [1, 5, 6, 13, 14, 16, 19, 26, 28, 37].
Recently, many stability and convergence results of iterative schemes have been established, using Lipschitz
accretive psendo-contractive) and Lipschitz strongly acervetive (or strongly psendo-contractive) mappings in
Banach spaces [9. 10, 12, 13, 22, 23, 21, 32, 37]. Since iu deterministic case the consideration of error terms
is an important part of an iterative scheme, therefore, we introduce a three step random iterative scheme
with errors and prove that the iterative scheme is stable with respect to I with Lipschitz condition where
T i= & strongly aceretive mapping in arbitrary real Banach space.

Lot X be areal separable Banacl space and let J denote the normalized duality pairing from X to 24"
given hy

J@)={fe X (e fy=el IS = Iz}, =€ X,

where X denote the dual space of X and () denote the generalized dunality pairing between X and X7,

Suppose (£2.3) denotes a measurable space consisting of a set © and sigma algebra ¥ of subsets of €2
and €, a nonempty subset of X. Lot T x € — € be a random operator. then random Mann iterative
schieme with ervors is defined as follows:

Tnet (W) = (1 = )iy () + an T, ap () + un(w), for each w € 2, n > 0, (1.1)

where 0 < oy < 1, w0 Q2 — C.oanarbitrary measurable mapping and {u, (w)} is a sequence of measurable
mappings rom Q o ¢
Also. random Ishikawa iterative scheme with errors is defined as follows:

Epap(w) = (1 = ap )y () + o Ty, () + g, (10),

. . ; {1.2)
alw) = (| = G (w) + 3, T(w. e, () + v (w).  for cach w e Q. n >0,

where 0 < ay,. 8, < 1, 24 : 2 — ', an arbitrary measurable mapping and {u,, (1)}, {v,(w)} are sequences
of measurable mappings from Q 1o O

Obwviously {oe, (o)} and L, )b ave sequences of mappings from £ in o

Also. we consider the following three step random iterative scheme with errors (2, (w)) defined by

g1 (w) = (1 = o )y () + e T(w, g (@) + uy(w),
Yu(w) = (1 = B,)z (w) + B, T(w, z,(w)) + v, (w), (1.3)
zp(w) = (1 —y)ap(w) + v, T(w, ., (w)) + w, (w). for each w € Q, n >0,

where {ug Cw )b o, ()} e, (w)}oare sequences of measurable mappings from Q to C, 0 <y, Gne v <1
el gy 82 = L an arbitrary measnrable mapping.

Putting f, = 0, v, = 0in (1.2) and 3, = 0, v, = 0. 3, = 0, w, = 0 in (1.3), we get random Mann
iterative seheme with errors (1.1)

Now we give some definitions and lemmas, which will be used in the proofs of our main results.

Definition 1.1. A mapping g : {0 — (" is said to be measurable if ¢~ (BN () € ¥ for every Borel subset
Biof X.

Definition 1.2. A function /7 : € = (' — (' is said to be a random operator it F'(-,.) 1 Q — ' is measurable
[or overy o € (.

Definition 1.3. A measurable mapping p: Q — ' is said Lo be random fixed point ol the random operator
FoQlxC— C0if Flw p(u)) = plw) for all w e €,

Definition 1.4. A random operator F : 2 x €' — € is said to be continuons if for fixed w € €. Fu, -

Datsion 1.4, A ATTESTED

hl the sequel, / denotes the identity operator on X, D(T) and R(T) denote the domain and the range
ol T, respectively.
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Definition 1.5. Let T: Q x X — X be a mapping. Then
(i) T is said ta be Lipschitzizon, if for any o,y € X and w € Q, there exists 1. > 0 such that

[17°( = T(w,y)|l < Lilz —yl: (1.4)

(i) T is said to be nonexpansive, il for any 2,y € X and w e §,

T (w, &) = T(w. y)|| £ llz =yl (1.5)

(i) 1 x XN — X isstrongly pseudo-contractive (9, 12] i and only il Tor all .y € X.w € £ and for all
v >0, k< (0.1), the lollowing mequality holds:
e =yl < e =y) +r[(d =T = kI)(w,x) = (I =T = kI)(w,y)]||, (1.6)
or equivalently iff for all 2. y € X, there exists j(x — y) € J(x — y). such that
(T =T)a = (I = Ty, i(r = u)) < kllz - yl%
(iv) T"is said to be strongly aceretive [9. 12], if and only if for all x,y € X and for all 7 > 0, k € (0,1). the
following incquality holds:
e =yl < (e = y) + r[(T - kI)(w,&) = (T = &I)(w. y)]I, (1.7)
or equivalently iff for all 2.y € X, there exists j(r —y) € J(x — y) such that

(T =Ty j(r =)} 2 kllx — y||*:
(v) IFT"is aceretive and R(1 + AT) = X for any A > 0, then T is called m-aceretive [25. 31].

A mapping T : € x X = X is said to be strongly psendo-contractive if 7 — T is strongly aceretive, hence
the fixed point theory for strougly aceretive mappings is connected with fixed point theory for strongly

psendo-contractive mappings. It is well known that if 7" is Lipschitz strongly psendo-contractive mapping
[11]. then T has a unique fixed point

Lemma 1.6 ([25]). Suppose X is an arbilrary real Banach space, T : D(T) € X — X is accrelive and
continuous, and D(T) = X. Then T 1s m-accretive.

Lemma 1.7 ([31]). Suppose X s an arbilrary 1eal Banach space, T o D(T) € X — X is an m-acerelive
mapping. Then the cquation x4+ Te = [ has o unique solution in D(T) for any f € X.

Lemma 1.8 ([13]). Let {a,} be a sequence of real numbers satisfiying the following inequality:
Pt S8, + 60 n>1,

where wy, > 0, o, >0 and lian a, = (), 0 <d <l Thenay, =0 asn — oo,

=42

Definition 1.9 ([2]). Let 7 : Qx ' — C be a random operator, where €' is a nonempty closed convex subset
of a real separable Banach space X. Let ) : ©Q — (' e auy measurable mapping. The sequence {anse1(w)}
of measurable wappings from Q to O for no= 0. 1.2, generated by the certain random iterative scheme
involving a random operator T is denoted by {f . ”[H‘J} for each w € Q. Suppose that &, (w) - p(w) as
n = o for each w € Q, where pe RE(T), Let {pa ()} be any arbitrary sequence of me:lwmhie’ mappings
from € to C. Define the sequence of measturable wappings kn : Q@ — R by ky, (w) = d(p, (w)

Py e
for each w € Q, Ly (w) — 0 as n — implies py(w) = plw) as n — > for each w € ), thﬂl A]H(JEIESTED

iterative scheme is said to be stable with respect Lo the random operator T, MML

—
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2. Convergence and Stability Results

Lt this section, we establish the convergence and stability results of three step raudom iterative scheme
with ervors (1.3) using strongly pseudo-contractive mapping under some parametrical restrictions.
Theorem 2.1.

Lot X be a real Banach space, T+ Q% X — X be a strongly pscudo-contractive Lipschitzian

random mapping with @ Lipsehatz constant L > 1. Let {a,(w)} be the random iterative scheme with errors
defined by (1.3). wath the following restrictions:
(1) BulLl = 1) + 4Ll — 1% 4 ByynlL— 1

12 < k= (2 - Koy L(1+ L)1 —=1). (n>20) ;

(it) T wu(w) = 00 i ey () =00 i g, (w) = 0

Ti— O H—Xx n—x
Then the sequence {ea(w)d converges strongly (o a wunigue random fteed point plw) o e
'S / ey ! ] F ;

f"n"f.!ullr.r, From (1.3). we have

(L (0) = pla)) + o[ =T = klan i (w) = (1 =T — kDp(w)]

=(1 = ) (10) — pla)) + an[(F =T = kD) an 1 (w) (2.1)
+ T, yplun))] = n,,{f — kI)p(w) + w,(10).
Since T is strongly pseudo-contractive and Lipschitzian mapping, so using (2.1) and (1.6), we get
gy () — pleo)|| < ||#per () — plaw) + o |[(f =T — kNtp(w)— (1 =T - kI (UIJJH
< (1 = v )l () = plae)|| 4+ an | T (w, ynu(w)) — T(w. Tpsr (w))l
+ul (1= Rl () — p()] + fun 0)]
= (1 — cn)llynlw) — j)(lr‘}iE 4 -‘_1-“||T{_'l:_.l_-y.u(w”
?‘[\;f'.\f'u-;.]ll\”']1|| . l],,[l = lll'}||.l"”+]_[u') — ‘,‘} “ i = .” (”‘}“'
which implies
L= an(l = By o) = pla)]] < (1 = )|y (@) = p(u)|]
F ol Tl gn () — Tl 2asr ()] + [l ()],
or
(|41 (w) Hw)|| < U~ an) [l ( (w)]| Qy T(4
ST Wiyl==s I e e Ty () == || s - (w
. ’J [1—nn(1=#k)] in(w) = plw)| 1= an(l = F)] T (w, yulw)) N
I (2.2)
Tl oy ()] + ————————— 1, ()|
(teryirpaq (u)| G MIHN ()|
Now.
1 — iy 1_[[—“”;\')
e 2 1 . B T el
} —vy (1 — k) | —u.“(l_;.;) 21 (1 ﬂcrr'!')-
inplies
fowy
EEPW N AT (2.3)
and TESTED
| — (2 — k) -
L= S RER S eR e 9 _ I ‘
| =t =) A—=al—k) L=l @= k), . 2 E
._'
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huplics

(B3 ]
—_— = i ? - ;\ 3 2_1
1 —a,(l=*~) S anl ) (2.4)
and
1 1
- — 95
1- flrr{l = -1\‘,] = A { )}
Using (2.3). (2.4) and (2.5). (2.2) vields

s 1 () = pla)l] < (1= ank)llgn(w) = plw)] + on(2 = KT (w, yulw))

: [Feen (res) || (2.6)
— T'(, By () || + e,

Now, using Lipschitz condition on T and using (1.3). we get
([T (e g1 Cn)) = TCers i G )N || € Lty (12) — g Can) ||

< Loy flun(ie) = Tl ()] + Llw, (w)]]

. ! : . (2.7)
< Loy lynta) — plred]] + Log |2 0w yulae)) — plun)]] + L] (10) ]
< Lo UL+ Ll tar) — plad|| + L[ag ()]l
Also, fronn (1.3), we have the following estimate;
g () — pla)|| < (1 = B)lzn (i) = plu|| + 3l (2w 20 (2e) = plae))|| + ||on ()|
< (1 = Bu)llzn(w) = plw)l] + Bl |l (2n(w) — plu))] + lfow(w)]
= [1 + (L = V]|l zn () = plw)|| + [|n{w)]|
= [1 + 3, (L DI = ) () + 4T u () + i (w0) — plaw) || 4 |len ()]
<1+ Bl L= DI = v llen(w) — plw)]] + 3| T (w, 2n(w)) — plw)||] (2.8)
L4 35— 1) ||n A} || = 1oy Car) ||
T4 d (L= D = ) llen(w) = plae)|| + Lapllaa(w) — plw)||] + [l (@)
+ (1 4+ 3, (L — lj'||n,r{fr}||

= |J 1 -ﬁn{l{- B ]Jll ~= —.‘lr‘]H'rH(“IJ B F[”‘)H
+ [t} + 11 + By (L — 1), () .

Using estimate (2.8). (2.7) hecomes

N7 g () = T ()M € Lo (V4 L)+ 3,0 = D = 9 + L) |2 (w) = plaw)]|
Lein(1 + LY on (e}l + Llltn(e)) (2.9)
+ La (1 4+ L)1+ 3, (L — 1)]||w, (w).
Putting vahies of estimates (2.8) and (2.9) in (2.6). we get
len i1 (w) = plw)]]

< (1T =anh)1 + 3,(L = D)L =, + L) (w) — plu)||
| “,3,[3 EYLCY + D)+ Bu (L = D] = v + L) |lzn (w) — plw)|l
+ [1 = auk + Laj (2 = kY1 + LY)]|lu,(w)]] + [Lau(2 - k) + %]Hu”{nr}[i

it IJ = rI”.‘..' { Jlr,ll;:l;l.' )2 — F.}“] 4 ,_}'”(_."‘ _ ]J]“”r”[:u_!”[
={(1 = ank)[1 + Bul(L = DL — v + L)

F (2= k) Lag (1 + L)1 + Byl — D1 = 3 + L) Yz () = pla)|] ATTESTED

L 2 " V3 Jrik ].
''''' [t =k 4+ Lo (2 = k)(L+ L)][len ()| + [Leo (2 = k) + ()

+[1 =@k + Loj (1 4 L)(2 ~ k)1 + B (L = D], ()] W-

I—_,_-——-'-’
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[L4 (L — D1 =7, + L) (1 —a,k)
s (2 = B0+ ) entie) = plu)
+ [1 = ek + Lo (2 — ML+ L)l ()] + [Lean(2 — k) + %]HH,,{N'}H
+ [ = ek 4+ Loz (1 + LY2 — B + 80 (L = 1)) (w)|]
= [1 4+ Bo(l— D1 = 3n + Lam) ¥ [1 — apfk = (2 = E)an L1 + L)} ||z (w) — p(r)||
F (1 = ok 4 Lad (2 — k)1 4+ L)])|Jon()]| + [Leva(2 — k) + %]||n,,{u:-}[| (2.10)
+ |1 =k + Lo (1 4 LN2 = B[+ 3.(L = 1)]||an ()|
< 1 = [aufk = (2 = koAl LY} = 3a(l = 1) = Bl = 1) = 4B (L~ 1)%] )l (e) = pla)]]
=1 =k + Lat (2 — k)1 + LY)|loa(w)|| + [Lan(2 — k) + %}Hun{u-‘}[[
+ |1 = apk + Lok (14 L)(2 = &)1 + Bu(L = D]|lwn(w)].
Using condition (i) and (2.10). we have

gt G} = plan)|| € 1 —opfk = (2 =Koz L(L + L))
Otk — 12 =&)L (V 4 4) 1 (1 =)@ (i) — pla )

) : . L ]

|1 = ayh+ Lo (2 — k)] + L)) r',,l'fr‘3||-r!Lu,,{'i—k']—i—Fl”u,,{u'}“

+ 1 = aph + L(n'r”:[l + L)(2 = &)J[1 + B8u(L — D)]|Jwn{w)] @11)
=1 = an{h = (2 = k)a, L1+ L) H]|lea(w) = plw)| i
+ [1 —auk + L(.iﬁ{i} — k)1 4+ L))o (w)]|

|
Lo (2 - k) + ;—_|||:.r.,,{fr:1||
+ [1 = ekt + L (14 L)(2 = k)1 + Bu(L - D)) lfewn(w)].

Fweleta, 2a,% e Nothen (2.11) reduces to

ey () — pldl] < [1—af{k - (2= k)aL(l+ L)}z, (w) = plw)]]
B4+ L(2 = B)(1 + L)][lea(u)] + [L(2 - k)

(2.12)
i %H.u,,{u'ﬂ + L1+ 2001 + L)) ||, (w)]].
Now. il we put [1 — ofk — (2 - k)jeL(l + L) }H] = 8 and
L (2= )00+ D))l ) || A I!,['_’ k) ; { e ()]l + L1+ 2001 + L)]|jwy (w)|] = ap.
then (2.12) hecomes
e1 (1) = plo)]| < Blfa(w0) = plao)]| + (2.13)

Flierefore. nsing conditions (ii) and Lemma 1.8, inequality (2.13) yields lim [l 41 (w) = plw) || = 0, that
n—x

s g (e boddefined by (1.3) converges strongly to a raudom fixed point p(u) of T,

O

Theorem 2.2, Let X be o real Bunach space. T2 x X = X bea strongly psewdo-contractive Lipschilzian

ratdont mapping with a Lipschilz constant L. > 1. Let {x, ()} be the random iterative scheme with errors
defined by (L.3). with the following restrictions:

o 5 e B 0" 90 e ATTESTE_D

s, 2 — k)apL(1+ L)1 —1t), (n>0):
v o
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(i) N () =00 e o () = 00 L wy, () = 0.
Fl=b T e CE

! 1

Phen the sequenee Loy () bos stable. Moveover, L py (0) = plw) dimplies L ks (w) = 0,
HW—%2C n—2g

Froof. Suppose that {p, ()} © X he an arbitrary sequence,

B () = [Pt () = (1 — o )qn (1) — ex (00, g (22)) — g (202) ],

where
giw) = (L — 3 e (w) + ST (wsrp(w)) + vy (w),
plw) = (1 = o (w) + T (wpalw)) + win(w),
stel thiat lim_ B, (w) = 0. Then
lpms Ce) = Tlus plan)|| = ||pper () = (L = ap)gn(w) — an T(w. g (w)) — wy (w)]|
T = v g () -+ e, T, g (W) + g () — T, plaw))|| (2.14)
= b () + [lsn () = T (a plaw)) ||
wlien

TS (1= ev, Ja (w4 o, Tl gy () + 1, (w) . (2.15)
From (2.15), we have
Splw) = plw)+ o .l,Etf - I = )T (w0, 8p(w0) — (I =T — kI)p(w))
= (1 = an)(galw) = plw)) + o, [(1 =T = kI)sy(w) + T(w, go(w))] = oo (T = kDp(w) + u,(w).
which further implics

splw) = plw)l] < lsulw) = plw) + e, [(I =T = ki)sy(w) — (L =T — kl)p(w)]|
< (L = o lqu ) = ple)]| + anll(T(w, g (w)) — T(w, su(w)))]| (2.16)
Foovg (D =R (s () — plw))]] + [[ e, () ]].

Rearranging terins in (2.16) and nsing estimates (2:3)-(2.5), we get

) = plu]| < (1= ah) [ (i) — pla))]|

Vg fonas (2.17)
o (2 = T (s gy (0)) = Tlw, s, (u))]| + M r

Following the same procedure as in Theorem 2.1, similar o estimate (2.12). we have the [ollowing
et it

llsn{te) = plw)ll < [1 —afke — (2 - k)l (1 + L) H][[pn(w) = plw)]| + [1+ L(2 — k)(1 + D)o ()]
1
4 [L(E — k) + !—] [frey ()| + LI1 + 2L(1 4 L)]|Jw ()] (2.18)

Ineqguality (2.18) together witl inequality (2.14) vields

lpnsa () = Tl plu))]| < 1= efhk— (2 = k)Ll 4+ L) H|lpn (ur) — pluw)|| ATTES
12200+ D)l + L2 )+ @i 219) TED
+ L1 +2L*(1 + LY |eer () || 4 ke ; ! : g E .
——
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Putring [1 —afk = (2 = F)aL({l 4+ L)}H] = § and

a0 -
[I + L(2 = k)L L)])|en ()] + [!.i_'_-’ b} 4 }J [ty (e} || 4+ L1 + 2L(1 4 IHwalw)| + ky = oy

and using condition (i), and Lenuna LS inequality (2.19) vields lim {[p,4 0 (00) — plaw)]| = 0.
H—x
Lo i pyglw) = plar). Hencee given iterative scheme is 77 stable,
=%
Now, let lim p,(w) = p(w). then using (2.18), we have
H=rx

By (1) :-Hﬂu-- ple) = (1 =g )gn i) — e Tl g L)) — 1, ()|
o HJ"H*I(”'} - "'u{_”":"'
< lpusi () = plae)| + llsn(w) — plw)]| (2.20)
g4 () = plan)|| + [1 —efk — (2 = k)aL(1 4 L) }]lipn(w) — plw)||

.

_ . el
UL+ L(2 = AL+ L) loalud)] + [L02 = k) + I]Hu,,[‘u-‘)” + L[1 4+ 2L(1 + L)]|lwy, (w)
which implies lim £, () = O,
=20
Putting 3, = 0, 5, = 0. m Theorem 2.1 and Theorem 2.2, we have the following obvious corollary:
Corollary 2.3. Let X be o veal Banach space. T QO x X — X be a strongly psendo-contractive Lipschitzian
random mapping with a Lipschatz constant L = 1. Let {r, (w)} be the random Mann iterative scheme with

ervors defined by (1LY wath Hee folluwing conditions:
1) << e (2 (1)

) lim w () =0
H—3DC

Then
() the sequence {ry(w)} converges strongly to unique fived point p(w) of T;

i) the sequence L, (w0) }oes stable. Moreover, lin py () = plw) vmplics lim ky(w) = 0, where {a,(w)} C
T —a A—+00

\ 1e an rH'l'IH.“-r'.'.r':,-l,' SCgenee.
Now . we demonstrate the following example to prove the validity of onr results.
Example 2.4. Let § [.-’,,‘.’] and X be the sigiia algebra of Lebesgue's weasurable subsets of Q. Take
N = I and define random aperator T from Q x X to X as T(w.x) = . Then the measurable mapping

{8 — XN odefined by £0w) = /i, for every w € (2, serve as a random fixed point of 7. It is easy to see
5 d N . I "

that the operator 7" is a Lipschitz random operator witl Lipschitz coustant L = 1 and strongly pseudo-
contractive random operator for any £ € (0. 1) and o, = 0.0082, k= 0.9, § = (0.1, 13, = ET:LFT‘_ T y—l-:l-;—ﬁ.
lall = =520 llwall = —ye ) = I—I—_—'—_-IJ satishes all the conditions (i) (i) given in Theorem 2.1 and

[heorem 2.2,

3. Convergence speed comparison

Let 2 = [0.1] and X be the sigina algebra of Lebesgue’s measurable subsets of 0. Take X = R and define
random operator T from Q x X to X as T(w.2z) = | — 2sine. Then the measurable mapping £ : Q — X
defined by £(n) = 0.3376. for every w € €2, serve as a random fixed point of 7. 1t is easy to see that the
operator 7-is a Lipschitz randow operator with Lipschitz constant L = 2 such that T is strongly psendo-

o Ly - _ : ) | S 1 i - I - _ 1 s
contractive aud. ay = 0.002, #h = e W = g lall = iy Jhall = [CE=3ES “”AT%ESTED

=08 r = 0.2, { =0.5 satisties the conditions (1)-(i1) given in Theorem 2.1 and Theorem 2.2.
e |
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Noew randon iterative scheme with errors is wmore acceptable for strongly psendo-contractive mappings
1 BIY | ppig

heeanse it has hotter convergence rate as compared to Mann and Ishikawa iterative schemes with errors:

Taking initial approximation @y =

.8, comvergence of new three step iterative scheme with errors.

[<hikawan and Mann iterative schemes with errors to the fixed point 0.3376 of operator T is shown iu the

following table. From table, it is obvions that in deterministic case new three step iterative scheme with

errors s mmeh bettor convergenee rate as compared to Ishikawa and Mann iterative schemes with errors,

.\'l'.1||'l_u-'; il heee step | |‘||“.§<‘i\\'.'l_ 1;-:-:',‘1'1\':‘ [ Mann irerarive
Horilions I Herative sehemoe scheme with scheme with
i with errors Crrors CLTOrS
1 ,r Divivil M e
[ L[ Lo 1.79874 1.7945
) ‘ 1. 78567 1.79749 178902
3 | 177853 1.79623 178353
T 4 | iamm 179497 77806
T 5 | 17642 179372 1.77258
5 G L7715 179216 176712
B L.75005 1.7012 176166
5 171206 178095 175621
;._ . 1, 74088 _ | 7R8G9 L7077
T | L7ossd L7NT 1 174533
R N i
1547 0.337601 (0.593217 0.337846
B _l-"}:!t\ P (1.337601 (.592803 (.337544
1549 0.337601 0.592569 0.337843
1550 0.3376 0.592246 0.337841
T imsl | 0376 0.591923 0.33781
___'..’ll!.'] | 0.3376 OATTLG 0,357601
2020 | 0.3376 | 0.47698 0.337601
Sl | 0.3376 0.1768 0.337601
w22 | 03876 | 0.17662 0.3376
2124 0.3376 i 0.47644 0.3376
N ‘\"“_-t_ (.3376 . ll.li.'i-_l;[-?‘U_J 0.3376
s 03876 | 0.837608 0.3376
8500 08376 0.337601 0.3376
8801 0.3376 | 0.3376 0.3376
8842 0.3376 0.3376 0.3376

N
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1. Applications

I this section, we apply the raudom iterative schemes with errors to find solution of nonlinear random
eonation with Lipselitz strongly aceretive wappings,
Theorem 4.1. Supposc that A : Q0 x X — X be a Lipschitz strongly aceretive mapping. Let x*(w) be a
solution of random equation A(w. ) = f: where § € X is any gren pont end S(w,x) = f+a(w) - Alw. r),

Vo © X Consider the new three step randon iterative scheme with errors defined by

wppr(e) = (1 — e o 00)=+ o S g (17)) A+ wg (),
! !
Gl = Hk= do Vo) + .|:,I..LI'I_|’|".‘”L'.'H}::' - Lt ), [-lt}
iy =) a3 St be) ) + () for eaeh € 0 n 20,

where Loy (a) b, Loy (a) b D Cat ) wre seguenees of measurable mappings fiom Q lo X, 0< oy, oy <1

and xy Qs X oan arbulvary measurable mapping. salisfying

lij '-"'Hl;.,[- l.J T “i*iilr- = J]‘! f j‘r.l‘.'al': 1{ = J-.l.'e < rlll{}‘. (2 T }")“H[‘(l = L]}{l i r]' {” 2 0)

(i) lim w, () =0, lim () =0, lim wy,(w) =0,
) c

n =+ n—oc
where £ > 1 as Lipsehitz constand of S, ). Then
il

r;'.J' conuerges ‘CFI'UJI_F,H'I_.'IE li HrLLge saltlion .J'"ﬂ H'] (Jf ."1(“1&.('} — f.'

(2) [t as S-stable to approcimate the solation of A{w.x) = f; by new three step random iterative scheme
with ervors (4.1),

Mroof. Since A(w.x) is Lipschitz strongly acerctive mapping. so Stw, ) = f+ e(w) — Alw. x) is Lipschitz

strongly psendo-contractive mapping.  Convergence of iterative scheme (4.1) to the fixed point % (w) of

Nappig Sl ) is obvious from Theorews 2,1 and it is easy Lo see that " (u) is unigue fixed point of S it

) is solution of random equation A, ) = f. Stability of iterative scheme (4:1) follows on the samice

O

lines as stability of iterntive selimue (130 In Theoven 2.2

From Theorem 4.1, with case we ean prove the following theorem:
Theorem 4.2. Suppose that A : & x X — N be a Lipschitz strongly aceretive mapping. Let x*(w) be a
solution of random eguation AQw. o) = [ where f € X s any goen poind and S(w,x) = f+uw{w)— Alw, x),
¢ e X Consider the random Mann stevative seheme with errovs defined by

Eorlw) = (1 = e )y () + o, 8w,y (w)) + ug(w), for each w € Q, n 20, (4.2}

where Luglw) ) is o soquenee of measurable mappings from 2 to X, 0 < ap <1 and xy : Q — X, an arbilrary

mecasuradle mapping. salisfiny
B oo vtk 2300

Ci) s nn i) =10,
bxg

"
where L > 1 is Lipschitz constapt of S(w.x). Then

(1) Az, lu)} converges strongly to wnegue solutton ™ (w) of Alw,x) = f:

(2) M ois S-stable to approcimate the solution of Afwoe) = [0 by random sterative schere with (.‘Ii’rJT{fj"zﬁ
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Abstract. Many populariterative algorithms have been used to approximate fixed point of contractive type
operators. We define the coneept of generalized -weakly contractive random operator T on a separable
Banach space and establish Bochner integrability of random fixed point and almost sure stability of T with
respect o several random Kirk type algorithms. Examples are included to support new results and show
their validity. Our work generalizes, improves and provides stochastic version of several carlier results by
a number of researchers 2

1. Introduction

Random fixed points are stochastic generalization of classical or deterministic fixed points and are
required for various classes of random operators arising in physical systems (sce [3, 4, 14, 15, 17]). Random
fixed point theory was initiated in 1950 by Prague school of probabilists.  The machinery of random
fixed point theory provides a convenient way of modelling many problems arising in nonlinear analysis,
probability theory and for a solution of random equations in applied sciences. The study of nonlinear
operators has altracted the attention ol many mathematicians in various spaces (see [2,13-15, 18, 30, 32, 33]
and references therein). Several interesting random fixed point results have been established in [4, 6, 8,
13, 15, 18, 19, 27, 34]. If the exact value of a fixed point of a mapping cannot be found, we approximate
it through a convenient iterative algorithm. With the developments in random fixed point theory, there
has been a renewed interest in random iterative algorithms [4, 6, 8, 13,27, 34]. In linear spaces, Mann and
Ishikawa iterative algorithms have been extensively applied to fixed point problems |5, 16, 25, 29].

Initially Mann [25] iterative algorithm was employed to approximate a fixed point of a non-expansive
mapping where the Picard iterative algorithm failed to converge. In 1974, Ishikawa [16] iterative algorithm
has been used to obtain convergence of a Lipschitzian pseudo-contractive operator where the Mann iterative
algorithm was not applicable. Later, Noor iterative algorithm [26] was introduced to solve variational
inequality problems. Recently, Phuengrattana and Suantai (28] introduced SP iterative algorithm and
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proved that it has better convergence rate as compared to Mann, Ishikawa and Noor iterative algorithms.
Kirk [24], Rhoades [29] and Hussain etal. [12] studied Kirk type iterative algorithms with faster convergence
rate than other existing iterative algorithms. Results on S-iterative algorithm for pseudo-contractive and
contractive maps, respectively, were established by Sahu and Peturasel [31] and Kumar et al. [23].

Stability and convergence results for various ilerative algorithms have been established in [1, 5-7, 9,
13,2022, 27, 28, 34]. Bochner integrability of fixed point is an interesting concept related to iterative
algorithms and is used 1o solve different problems in functional analysis and probability theory. It is also
used to study geametry of Banach spaces and differential equations in vector spaces (see [10] and references
therein), Recently, Zhang et al. [34] studied almost sure T-stability of Ishikawa-type and Mann-type
random algorithms for certain g-weakly contractive type random operators in the setup of a separable
Banach space. They also established Bochner integrability of a random fixed point for such random
operators. Very recently, Okeke and Abbas [27] introduced the notion of generalized ¢-weakly contractive
random operator and obtained almost sure T-stability of random Ishikawa iterative algorithm for these
vperators.

We prove Bochner integrability of a random fixed point by using a verity of very general iterative
algorithms like random Noor, random SI, random Kirk-Noor, random Kirk-SP for generalized ¢-weakly
contractive aperators satislying the condition (2.5). Our results are improvement and generalization of the
vesults of Zhang et al. [34], Aweke and Abbas [27] and give random version of many important known
resulls.

2. Preliminaries

Let ¥ be a sigma algebra of subscts of a set (2 and X be a separable Banach space. Throughout this paper,
we assume that (€2, £, ) is a complete probabilistic measure space, (X, B(X)) is the Borel measurable space.

A mapping & : £ > X is called (a) X-valued random variable if & is (I, B(X))-measurable, (b) strongly
y-measurable if, there exists a sequence {x, | of g-simple functions converging to &, p-almost everywhere.
In view of separability of the Banach space X, the sum of two X-valued random variables is an X-valued
random variable

[he following definitions and results will be needed in the sequel.

Definition 2.1. A napping g - €2 — C s said lo be measurable rfgf_] (BN C) e L for eoery Borel subsel B of X and
nonempty subset C of X
Definition 2.2. A finction T+ Q2 x C — C is said to be u randont operator if T(-,x) : Q1 — C is measurable for cvery
velC.
Definition 2.3. A weasiable mapping poo Qs C s said to be random fixed point of the random operator
FoQx C— Cf Tlio, pw)) = pliw) for all v e (L,

We denote by RE(T), the set of random fixed points of 1.

Definition 2.4 (117D, A random variable & : Q — C is Bochner integrable if for each

we ), I E @) < oo, 2.1)
Ly

where [|EGO)| 15 a non-neeative real valued random variable,

I'he Bochner integral is a natural generalization of the familiar Lebesgue integral for vector-valued set
functions

Definition 2.5 ([171). A randon: variable & is Boclmer integrable if and only if there exists a sequence of random
pariables (&,)°, converging stronghy to & almost surely such that

LR ATTESTED

L it

Coordinator N o iy Princioal
IQAC L ncipa
e i Sot e Koo Colge
Dot B LAHERL) Kalanaur (Rohtak) Haryana



AR Kl et al, / Filomad 3102 (2017), 3611-3626 3613

Definition 2.6 U341, Lot Cbea noenipty subset of a separable Banach space XA randonoperator T - QA x C — C
is p-tweakly contractive-type operator if, there exists a contingons, non-decreasing function ¢ @ R* — R* with
() > 0 for each t € (0,00), ¢(0) = Oand for each x, y & C, w € €, we have

[ [T (zer, x) = Tze, y)lldu(ew) < [ [l = wlldp(re) = (| llx = ylldu(eo)). (2.3)
Ja Jo Ja

Definition 2.7 ([271). A randon operator T+ Q x C - C is generalized d-weakly contractive-type if, there exists
Loy = Oand o continons, non-decreasing function ¢ @ R® — R with ¢(t) > 0 for cacli 1 € (0, 00), ¢p(0) = 0 and
for cacli x, y € C, w € L), we have

! 1T (e, x) = Te, y)lledpdae) 31'“‘"'""""”\[ [lx = ylldp(w) — ¢ (f ||i‘~yile;a(wJ)]. (2.4)
wJ1L] L 9]

Keeping in mind the above definitions, we introduce the following contractive condition,

Definition 2.8. A randont operator T2 Qx C - C is generalized ¢-weakly contractive type if there exists L(w) 2 0
and @ continuous and non=decreasing function ¢ R* — R* qwith ¢(t) > 0 for cacli t € (0, 00), (0) = 0 and for each
x, y € C, we L), we have

[ 1Tz, x) = Tl )ldui(ie) < et ’ ( flv = wlld gz —r':(] llx = _l,rliei'_u{m}]l. (2.5)

A WL (3
Both the condilions (2.4 mnd (2.5) are independent of each other. If Lae) = 0 for each w € Q in (2.4) and (2.5), then
both redirce Fo condition (2.3).

Molivated by the fact that three-step iterative algorithm gives better approximation [11] than one-step
and two-step iterative algorithms, we consider random three-step Noor and random three-step S iterative
algorithms associated with T,

Let T: Q% C — C, be a random vperator, where C is a nonempty convex subset of X. Let xy: Q2 — C,
be an arbitrary measurable mapping, {u, (@)}, {o,(0)], [w,(w)| be sequences of measurable mappings from
0 Cand 0 <, i, < 1. The random versions of various iterative algorithms of T are defined below:

Randoam Noor iterative algorithm with errors [x, (@)}
G (1) = (1 = a (1) + o T, yalie)) + (i)
Wlt0) = (1 = f)xu () + B, T, 2, () + vali) (RN)
za(tt) = (1 = padxlaw) + 3 The, x (o)) + w{w),

Random SI” iterative algorithm with errors {x, (i)
ey (i) = (1=, Y, () + oy Trey () o)
) = (1 = fdzatee) 4 BTGz (i) + i) (RSP)
2, i) = (1 =30 000) 4 3 Tl (o)) + ey, (),

Random Ishikawa iterative algorithm with errors [y, (w)h:

Xuar(10) = (1= av,) x,(0) +a, T (w0, v (@) + 1, (z0)

% (RI)
() = (1 = By) () + puT (w, xp(w)) + v, (w0)
Random S-iterative algorithm with errars {x, (w)k:
Xy (10) = T {7, 1y (10)) + 1 (10) (RS)

yulw) = (1 = B, ) xu(t0) + [ T (T, 2 (q0)) + 0, (0)

Random Mann iterative algorithm with errors [x, ()}

N (1) = (1 =t ) (e) + oy, T, X (500) + 1 (10) AT T{E'STED
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Remark 2.9. Puiting i, = 1 (o) = wolw) = Oand v, = w,(w) =0, for all n € N, in (RN), respectively,
e obtain (RM) ardd (RE. Also, putting fi, = vy = o,(0) = i, () = 0 for all n € N, in (RSP), we obtain (RM).
Simtdarly, putfing ay = 1, 3y = e} = Qand a, = 1, 1y = wyli) = 0 i ARN) and (RSP, we get (RS).

Hence, (RN) and (RSP) iterative algorithms are more general than (RM) and (RS} iterative algorithms,
However, (RSP) iterative algorithim is most useful among all these in view of its fastness and simplicity.
For ayn # 0, B0 # 0, a0 # U, s, B 1k € [0, 1] and fixed integers 1, s, I, most general random Kirk
type iterative algorithms are defined below:
Random Kirk-Noor iterative algorithm with errors {x, (w)}:

N1 (100) = aviy g (700} + Zn....f"'(rr'. Vo) + 1 (10, Zn.,-,, =1,

=1 r={}
Yule) = fopxp(ae) + Z;-:'._-_,-J"-'{m, Zy ) + vyl 21’1‘”“. =]
=1 f=1}
) = Y yuaTH e w) + ), ) vk =1 (RKN)
k=0 k=l

Random Kirk-SP iterative algorithm with errors [v,(w)):

Xw  fT0) = L:l,. Tz, i) =+ w i), L:l.,. = |

i={l
-l e -_"1
yaliw) = L;‘S,, (T, zp) + v (), Lﬁ,, gz |
r={)

1=0
1

z; () = Z v T (o, X)) + 1), Z W= (RKSP)

k=(] k=01

Random Kirk-Ishikawa iterative algorithm with ervors [, (@)}

Vi 1 (70} = @ Te) + L.L.._,.'I"'[z':-',_L,:..-} (1), L“”" =]

Yt = frnn G0) + }:;i., T, x,) + v (w), Z‘ Bii=1 (RKT)
= =)

Random Kirk-S iterative algorithm with errors [x, (i)}
£

= :
Vi) = L”" i TG0 ) =+ (), Zl = ]

() = Byox, (i) + Z;‘-I.,..J"[;:‘, X)) + o), Z‘I;“-" =1 (RKS5)

=0

Remark 2,10, Put r = s = | = 1 in (RKN) and (RKSP) iterative algorithins and get (RN) and (RSP) iterative
algorithms, respectively, with ay, ) = aw, Puy = B Yut = Vae

Define a random iterative algorithm with the help of the functions x,(w) as follows:

sty HToratun),. w=0,1.2,3,..%

AT%@
where 1 is some function measurable in the second variable. i ESTED
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Definition 2,11 (134]). Lot & (e bea ramdont fixed point of a randonr operator T and Bochner integrable with respect
to the sequence {x, (@)} Let {y, (wo0)) be an arbitrary sequence of random wvariables, Set

Calm) = v ei i) = £CT o)) (2.7)
amd assume Hiat | Ge)]] © LHEAS ), v = 0,1,2,3, The steratioe algorithm (2.7) is almost surely T-stable if

and ondy if lim _]L Mewtalldutio) = O implies that & (w) is Boclmer integrable with respect to {1y, (w)).
T o - by

Lemma 212 ([5, 27]). Let [0,) and [\,,] be foo sequences of non-negative real numbers, {a,| be a sequence of positive
numbers satisfying the conditions:

- i i W
E g, =0 gnd  lim — =0,
1=+ (T,

=]
[F Ao € Ay = o0l A) + 0, holids forcacli i 21, where s RY — R is a continuous and strictly increasing function

with p(O) = 0, Hhwer (A conoerges fo Das i — oo,

Lemma 2.13 ([5]). Let {a, ) and (b} be fwo sequences satisfying apey < ay + by, forall n 2 1. If ¥ b, < o0, then
=l
lim a, exists.

=t

3. Random Noor Type Iterative Algorithms with Errors
We beain wilth a technical result

Lemma 3.3, Let C e a nonempty subsel of a separable Banach space X and T : Qx C — C be a random operator
satisfyng the condition (2.5). Then, 7 i€ Nand ¥ x, y € C, we have

¥ Lbwe) ¥ e e =2 x| : _
( [IT' e, x) = T, Pildu(w) < ’ I Ilx = ylldu(ze) - f:‘J( f [l = ylldu(w))l- (3.1)
wil L JL)

£l

Proof. 1t is based on mathematical induction on i,
Ifi =1, then (3.1) becomes

[ T (e, x) = T(ie, w)lldg(ev) < ptsa=Toe! ‘ f [lx = ylidu(ew) —f,":( 1 _t;ll:f,u{w,\)]‘
Jo 0

.., (3.1) reduces to (2.5) and the result holds.
Assume that (3.1) holds for i = g, 9 € N, that is,

. I {a) ‘_ = =T Gl i
[ T, ) = T e, willdp(io) < e ¢ ’ [ Il = ylldp(ze) — CJ( f llx - _l;lln‘u{w)”_
Ji1 i e

The statementis true tor =g + | as tollows:
| = TPl = T = Tl

< ol el "“""'“3‘ [ T (v, x) = T (o, Plidu(e) = ¢ (f [IT(z0, x) = T (w0, ;f)ildp{w))‘
Jio Ll

< ‘,1 Gl T ey =14 el ”-;-.f(“}t ‘} o T‘?(u‘a !;‘]"dlli(fﬂ)

will
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Remark 3.2, If y = p(io) (random fixed point of T), then (3.1) becomes

f T o, x) = T (e, p)ldp(ee) < \ [ [lx = plld () = {'.':( f [lx = p||d|ufu'))
s JSLY AAL)

Theorem 3.3. Let C bea nonempty closed and convex subset of X and T2 Q x C — Ca random operator satisfyimg
the condition (2.5) with RECEY # ¢ Lel pleoy e a randoi fixed point of T and {x,Ge)} be (RKN) admitting the
followeing vestrictions:

(1) 0 = a1 = Byl =l o
[”) Qi < "'lolrr';..,.u < ]r; Vi <7

(i) limv ugae) = 0, hm vy (w) = 0, Lim e, Ge) = 0.
N+ H—bens I—ais
Then the randam fixed point plaw) of T is Boclmer integrable.
Proof. Ta show that p(re) is Bochner integrable, we shall prove that
lim f [l lae) — plalldp (i) = 0

Using iterative algorithm (RKN) and Remark 3.2, we have

I e () = plaolid o)

<t [ (e, (0) = plao)lfdpie) + X‘ A ] 1T (e, ) = Tro, p)ll + f Nt Gl i)
Ja Jo

[ Iy = plidplew) = f:':( [ It — ,l?lldp(':‘:!]) - f [foe Eo)llet pa (e
Ji ' Jo 0

< r I (ro) = plrop)ld (i) 4 Z.-:., ‘ [ 1144 —p||eip(iﬂ)l + f [, Ccoled pefaw) (3.2)
1 LD 4]

r=1

< g [ v dzo) = plaeDlld o) + Zl
L2

Similarly,

[ [y (ee) = plaoil idu ()
O

w
i
=

£ B { |Cx ey = plae)l dulz) + X‘I'.';'-'-‘l ’ Wy = ;r||d|u{;u)] + [ ([, (o)l e (a0 (
Ju = U Ju
Also, using Y Yii = 1= w0, we have
k=1

[ [z, (o) = plee)|l dulze) < 1o [ L (i) — plec)lidp(ie)

o1 ein ]

f Z ’.L e = plldofee) - :J(‘L I, — J”ll.lf,lrlu'}]

< ’ Lz i) = plao)ll dpie) = (1 = }'n_n]ffi{ Ilxy — plld;.:(w}) + (e (o)l ()
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Putting (3.3) and (34) in (3.2), we get
] e () = plav)|l dpeze)
< ( I| ey le) = plae)) e pelie) = (F = 0)(1 = fia)(1 = ]'u,u}(f?( f Ilx, () -p{'u-')lldy(w)]
Ll LY

+ I [Jeen (roNld e dae) [[er, o)l st (aw) + / [ty (o)l pe(ae) (3.5)

il Ly i)

Using conditions (ii-(iii), we obtain:

Jo Ml Gl -+ e, Geo)ll + o (ao)ll) dpre) ; 1, N zo)] + e, Go)ll + e, o)l dp(o)

11 — = i == —
= 0 =m0 =Ll =) s (-1 - A - 1)

Now putting ], ¥, Go)=plo)lldutie) = Ay, (=) (1=Bu0)(1=10) = 0, and [L, (e o)l + [l @)l + oy, (o)l du(e) =
o, in (3.5) and using Lemma 2.12, we get lim L Iz (z0) = pla)l| dp(o) = 0. O

Theorem 3.4, Let C be a nonempty closed and convex subset of X and T : Q@ x C — C a randon operator satisfying
the condition (2.5) with RE(TY # o, Let plw) be a random fived point of T and |x,,(w0)} be (RKN) admitting the

tollowing restrictions:

()} Qe < ox, Bun <0 Yoo <)

(iii) lim o, (ae) = 0, lim o, (ae) = 0, lim o, (o) = 0.
=ty —on

(1) Z(1 =iy )01 = Bl = 3p) = ca

U, ) s alost sieely T-stable.
Proof, Let {p ()] be any sequence of random variable
v O SR (3.6)

e

el = “; 7)) = aopelie) 4 T T e, )+ (30)
|

where

(10 = P, (T0) + Z;.’.. U ) + 3,

ry(iv) = Z ok T (i, pu) + w,(iw)  and

lim_ [ e o)l dulie) = 0.

8]

Now we prove that plw) is Bochner integrable with respect to the sequence {p, {w)].

)

Using (3.6) and Remark 3.2, we have

f l|p1 G0) = plao)lldp(ae) < { i () = ety opa(ae) +En”.-T’(w,q..)+ur,(wllld;i(w)

vl Sl =1

+ 0 [ [[(p Gioy = plioy)l dutae)

e ‘ ATT
+ X“l"' j 17, ) = T (v, Il + ] (e, (e )lled e () ESTED
j=1 . WSO
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[ el peda) '*’lhn[ [[(p () = pla))ll dpliv)

+ Z iV [ I ]I:"f'r.' . |“||‘F|u{'l'“] - (fl)(f "};"n o P"fﬁ“““))
=1 WAL L2

< { [ley (mplldp (o) + aup [- [[(pulie) — plawnl| dulw)

E Z Y ’L [l = plledpafe)

+f1|1.'.,(w)|iufy(w)
Q

+ [l (ao)ld pi(ee) (3.7)
Jo

Also

i f |[er (2l ze ()
(2

+ J (e (eo)lid )
el
(3.5)

[ lquta) = planlf duge) < pa [ iy = pladll dpatee) + (1 —;i.._.\.;‘ l (1, = plldptee)

and

[ [[#a(et) = plaw)|| d plie) < r (o) = plan|| du(aey = (1 = ;f”.l.]:f‘)(f lpm —p||d;i(:v)) +J Jliw (zo)ld (o)
L (949 {2

LD WAL

(3.9)
Now estimates (3.7)-(3.9) yield

[ [pis 1 () = ple)|id pdav)
L)
< [ (i) = pladlldutaey = (1 = ap)(1 = fun)l = ?’n.-_n]'{."( I. [lpi (7o) = plaed] ”‘.“(”’)]

S L1

+ [ fleo, fzo)iel (i) + [ fan Gl e (ze) + [ [er, (zoM el e (ze) + f [l el plze) (3.10)

W e I I i8]

Using lim . lleataoll duiey = 0 and conditions {it)-(11), we have

_],_.Hlii‘-.'ifl'?i i i)+ o Gl ] plze) + fl e (el dpefie)

HTH —— = e
e (1 = a1 = Baodd = o)
L,ll!:e'.,.{'.['5|| + i Go)l] + legGollldue) + LFHi'n(u-’Jlllf.“lw)
< lim = ; _ : _
e (1—a)1 =1 =)

_\:m_\- taking A, J._._. {0} = popll du{ze), oy = (1 = aa)(1 = fuo)(l = yu0) and 8, = _[('1[1|w.,(w)]| + |y ()] +
[Fo )l el pa(ze) 4 j e tmenl| deeGae) in (3.10) and using Lemma 2,12, we get Iiml_]‘_'_I [[pa(ze) = plao)ll dp(w) = 0.

Conversely, let plir) be Bochner integrable with respect to the sequence [pu(i)). Then we have

[ e wtalidia(ie) [ e (50 = o) + Y v, TG + a0 o)

< J [1(py a1 (i) = pleoD|ldu i) + qup [ [I(p (o) = plaonll du(w) ATTESTED
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. Zn.;_ [ I (e, aq) = T, pll + [ [Ja G| g (i) (3.11)

]

The estimates (3.5), (3.9) and (3.11) yield:

[ (e (ropled adeer)

< [ s tze) = pledl] dfgedie) = (1 = o)1 = i o)1 = 2401 = :'ir,i])q]( f |Ip,,(ru)—p(w)ud,u(w))
Ja Ja

' ( ey, dze) ][l pae) +

o, el gedeo) + [ [, (o)l p (e0) (3.12)
Using condition (iii) and Bochner integrability of p(w), (3.12) yields lim L‘.} le, (]| du(w) = 0. This shows
- # ey ML

that {x, (te}} is almost surely T-stable. O

Example 3.5. Let € = [0, 1] and X be the siging algebra of Lebesgue’s measurable subsets of Q. Take X = R,
C = [0, 2] and define rardom operator T €2x C — Cus T, x) = "'-E-l Then the measurable smapping p - €0 — X
defrned by plwe) = <, for every i € L, serves as a random fixed point of T. Also, tor ¢(f) = ; and L(w) = 3, we have

(2

(1T ¢, x) = T, wildulee) = ‘ [ v = ylldue) - c,‘l( j flx— _lf||dp(m}]l
Jo Jo

< gl “”'"‘“"l ] lx = ylldptw) =@ (f [|x = .'f'“"f.“(“’)]‘a
L Ja 8]

. m R N . . h K ] r
Hence T satisfies the condition (2.5), Taking parameters ¢y = 1= 757, =1 - e = 1= T and choosing
error forits () = e vy lin) = T i, (iv) = '.._'.ITT we laoe

"t

O < B Yo 205 (1 =Xl =il — tp) = 2 =00
Yot i) { Vo) = Puall Vo) A A+ M +m o

and lim () = 0, limoog(ee) = 0, limvze,(w) = 0. So, all He conditions of Theorem 3.3 and Theoren 3.4 are
satisfied and hence the random fived point pGo) of TG, ¥) is Bochner integrable and (RKN) is almost surely T-stable.

Special cases of Theorems 3.3 and 34 pravide the following series of new important results for random

operators,

Theorem 3.6. Lot Cbea nonemply closed and convex subset of X and T2 Q3 x C — C a random operator satisfying
the condition (2.5) with RE(TY # &, Let plw) beoa random fixed point of T and {x,.(w)] be (RKD) admitting the
follotwing restrictions:

('I_.' .\._,[ | - thy i|J{l - ﬁ._-_u? o
(i) o <o g < fi
(i) lim o, w) = 0, lim o) = 0.
= el
Then p(w) is Bochmer infegrable and (RK1) is almost surely T-stable.
Proof. Putt =0, w,(w) = Uin the proofs of Theorems 3.3and 34, O

Theorem 3.7. Let C bea nonemply closed and convex subset of X and T : Q x C — C a random operator satisfying
the condition (2.5) with RE(T) # o Let pla) be a vandom fixed point of T and [x,(1w0)} be (RKS) admitting the

tolioantiy restrictions:

(i) Z(1=fyp)=o
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(i1) Big < lf".
(i) Lim e, (ze) = 0, lim o, (i) =0

Chen plae) as Bochner indegrable and (RKS) s alinost sieely T-stable
Proof. Setd =0, a0 = U, iy i) = Uin the proofs of Theorems 3.3 and 34. O

Theorem 3.8. Let C be g nonemply closed aind comvey subset of X amd T2 Q x C = Ca random operator satisfying
the condition (2.5) with RECT) # o. Let pae) be a vandom fixed point of T and {x,,(w)) be (RN) adinitting the following
restrickions:

() i)y = 0

(iD0<a<p,0<pfi<padl<y v (nz1)

(i) lim w,Ger =0, lim o Ge) = 0, lim w,(w) = 0.

Fhei piee) 1s Bochoer nutegrable aid (RN) is almost surely T-stable.

Proof. Putr=s=1= 1, a,; =apaug=1=ay, Bu1 =P Puo = 1= Bus Yt = Yo = 1=y in the proofs of
Fheorems 3.3 and 34, O

Theorem 3.9. Lot C e a nonempty closed and convex subset of X and T 2 Q x C — C a random operator satisfying
the condibion (2.5) wille RECT) «# ¢o. Let plae) be a random fixed point of T and {x,,(w)} be (RS) admitting the folloting
restrichions: J

(i) £, =0

|lH W o< a': < fratii 2 1)

(i)l g(ee) = O, im0, ey = 0
Then plee) is Boclhner integrable and (RS) is alnost surely T-stable.
Proof. Putr=s=1,1=0,0,4=00,1 =, P =1-p,inthe proofs of Theorems 3.3 and 3.4. O

Theorem 3,10 ([34]). Lot C bea nonenpty closed and convex subset of X and T - Q x C — C a random operator
satisfiping the condition (2.5) with RE(T) # ¢. Let p(ao) be o randont fixed point of T and {x,(z)} be (R1) admitting
Hie following restrictions

(i,l .\_._:l.dl‘r. = 03

(i) D<e s, 0<fi<ifnz=l)

Ulen phae) s Bochiner integrable and (R1) s almaost surely T-stable.
Proof. Putr=s=1,1 =0,y = ag, o = 1=y By = B Bug = 1= B, wy () = 0, vy{w) = 0, wy(w) = 0
L = 0 in the proofs of Theorems 3.3 and 34, [0

We now extend Theorem 3.3 for three generalized ¢-weakly contractive random operators as follows:

Theorem 3.11. Let C be g nonenpty closed and convey subset of X and let T, : QA x C = C. i = 1,2,3 be three
randont operators satisfying the condition (2.5) with C M = I“‘_I RF(T,) # 1. Let p(i) be @ common random fixed
paint of the randon: opes ralors | Toi= L2 3 and [ Gae) be the random Kirk-Noor algorithm of three operators with
errors defined as folloies

i

Xys1{0) = oo, (0) + L iy, TG0, )+ (wo), Z &= 1;
i=1

=)

Yultw) = fyox,(w) X a"i-..-l“_itfr', Zy) + vy(tw), Bui=1 (RKNTO)
=1

T Z ST )+ (), Z. =1 ATTESTED

I inl

Coordinator Principal

IQAC Sat Jinda Kalyana College
S.J.K. College, Kalanaur Kalanaur (Rohtak) Haryana



A Khan et al, / Filomak 31:12 (2017), 3611-3626 3621
where (), {eola)d, (o, (o)) are sequences of meastrable mappings from € to C with .‘:‘f{“ uy(w)dufw) < oo,
L[ on(w)dula) < oo & ,[,ff'a.(i\"ltf_uii:’] < ooand 0 < w,, B, < 1 Then connmon random fixed point of the
rindons operators (1, § = 1,2,3}is Bochner infegralble if and only if for all w € €, lim inf ‘u dx, (@), CRF)du(w) =
0, where dix, (o), CRIDY infllv i) = &l & e CREY, provided _L‘Il'f.{;.",.‘_{r{'n — Go)ldutey = O implies

T, &) — Slw)l I
Proof. The necessity 5 obvious and henee omitted. Now to prove the sufficiency part, we show that
lim JII_\'.,(N'} = pla)|| duliv) = 0, where p(w) € CRF.

Following the same steps as in the proof of Theorem 3.3, we have the following estimate:

I |21 (0) = p\'n"}|i:i'lu[:‘<’l
AN

< [ [ (eo) = pleonlbd (i) = (1 = @)1 = o)l - ;J.,,“)(;:U [l (o) —;J('.u}udp(w))
) 9!

+ { ([ o)l ga(zo) =+ [ (e (redlld e (o) + ( [l (eo) || o)

[' o) = pleonlipaon + [ TrenGeoldptee) + [t o (o)) + [ i ()l (a0) (3.13)
(%] ¥ P il
It follows from (3.13), in view of d(x,(w), CRF) = inf{|lx,(w) — &) : £ € CRF|:

[ d(xia (), CRF)dpae) < [ d(x, (), CRF)du(w) + b, (w), (3.14)
where b, Go) = ([ el + [ Gl + | e GelDdae)

Clearly, Y b, < e 50 by Lemma 2.13, lim .h\'“ v L), REYdut) exists,

[herefore, using the given condition in the theorem, we have forall w € €,

lim I dCx, (w), KF)dulw) = 0.
Rl

Now, if a, = [ [fv, (70) = plae)|| dpfio) in (3.13), then it follows that for any natural number m and foralln = m,
(it ] < 1y m— i GO+ b= (11}

< | in=a (i + b (70) By (70

< e € [l ()| + X be(a). (3.15)
.I. i

I'herefore, we have
k=1
1 f | | 1" R 11
ety q mlze) = a, (]l < Jla, (o)) + L (o) + oy, (o]
1

Ut Gl + Z by () (3.16)

As Y b, < woand lim r\,.‘.i{.\'.,{.ff'J, CRE)u(w) = 0, so there exists my € N such that for all i = my, we have
I s

—
=l

Ji, dx(w), CRF)du(w) < § and }.. bi(w) < 5. ATTESTED
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Hence there exists g € CRE such that

f [l (2o} = gzl i) < =~ forall oz my.
ikl 4

So from (3.16), we have that for all w e Q, for all i = nry and for any positive integer i,
i~

- . ;
ety — i G|l < 24 (]| + L blae) < 2--1 o= 8

j [y s (T0) = X Cielldp () < &
]

from which it follows that 1 Jlil! i|.\',,[:.'rlll.-l';:iu'}| is a Cauchy sequence for each w € Q. So, -[1 [, (o)l (aw) —

||,J 1€ el (ze) as n — oo for cach w € Q, where {“ [l (ro)lld () = €2 = X, being the limit of the sequence of
measurable functions is also measurable.

Now we prove that &£(w) & CRE. As lor eachiv € £, L, [ (@)ld () — J;.l||;‘__'(w}i|d‘u(w), when n — 0, 50

there exists np & NV such that
(o) — S(tolld aany - ; tor all 1= nn.
b .
Let s = maxiugg, mia), Then for all e £ and 1 2 iy, we have

[ T G Etae)) — Eaeplld pze)
. I._'
e

[y (eer, &ee)) = et plze) 4 [ & ) = ¢ tff'lllrflulir')

J

?

<

[t (e = &Gl pe(ae) — I & Ge) = aqeelld g @) + [ (1" Caer) = E(eenlld pfaw)
w10 wlf

1

1A

2 [ [ () —= SN pd 7o)

£2 [ N () = 2zl i (zr) + 2 f 1€ (20} = v, (elld pr (zo)

v

which yields Ty G0 = L) Tor each i @ € As & is measurable, so & € RE(T). In the same way, we can
show that £ € RE(T-) and £ € RI(TS). Hlence we have & € CRFE. Thus common random fixed point of Ty, T3,
I'y is Bochner integrable,

4. Random SP Type Iterative Algorithm With Errors

Theorem 4.1, Lot C bea nonempty closed and convex subset of X and T2 Q1 x C — C a random operator satisfying
the condition (2.5) with RE(TY # . Let pGioy be a vandoir fixed point of T and (x, (1)) be (RKSP) admitting the

followomg restrichions:

(i} E(1 =j0) =00 X1 = fign) = o0 0r L(]l =) = &

(i) Yun < ¥ 0r Bup < foran < a ATTESTED
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Then pla) of T is Bochmer integrable and (RKSP) is almost surely T-stable.

Proof. Using iterative alporithn (RKSP) and following the corresponding steps in the proof of Theorem 3.3,
we have

’ I 14200 = Ir-'l..'ralinflut;e'}

<aun | Mooy = plaoDidulae) + Nt [ 1, = plldp(eo) | + an,,(w)Ild i)
f‘ Z ’..l_: - ’! J0 ¢

[;5{_1;,,.‘_;:-} plenll deze) 4 { (et GreN e e (e (4.1)

."ui:nilnri\’.. i
I.. ly o) = plee)]| d (o) s { [tz ey = plaod)ld g ier) + [ [l (o)l i (c0) (4.2)
Also,
{. lzy (i) = plao)ll o)
< f‘ (|3 eoy = plun]| duliey = (1 = py \;]u( J [y = gJIid,n{u‘]) + ;ﬂr:'.,[zt'llln‘lu(w} (+.3)
il L)

Using estimates (L1)-043) we arrive at

r |y (20 = plae)l ifu(a)

< [ [1Cx, (a0) = pleen] deedie) = (1 - j'..\)i-’a( ! 13, (o) —p(n!}lldu(uﬂ)

Jo
4 [ [l ool gt + ( [ o)l oy + ( [l (e lef ez (4.4)
Usine condibions (-0l we have
|'I.}] e taell o JJestzed! & i el jd pedaed J£.|||'||'._.l:r'i|| e ol + e (el e pe(ao)
lim = — < lim = =
I (1= Vi) fypemes s ([ = 1*,

Now, if A, = [I [l (i) = pla)l| dulew), o, =1 =790 and
= [ [ee, GGod =+ [Jee el + e Gl e pae)
oL

in (4.4), then using Lemima 2,12, we get lim [I [lx(t0) = pGeo)ll dulw) = 0.

The almost sure T-stability of (RKSP) can be proved as in the proof of Theorem 3.4. O

Remark 4.2, As (1 — o, o)1 = foodll = 1a0) £ 1 = yvn implies £(1 = o)1 - BuoX1 = ¥na) £ E(1 = Yup), 50
SO =y g M=) (1 =100) = o dimplies £(1=yy0) = o0 hence we conclude that randont SP iterative algorithm with
crrors requires weaker vesteiction (501 = von) = o) on paramelers as compared to random Noor iterative algorithm
will ervors iohich requires X1 = a, 00 = Bua)(1 = 300) = o0, as far as Bochner integrability of fixed pomt p(i) s

concerind.

Special cases of Theorem 4.1 provide the following new important random fixed points results. AT TE STED
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Pheorem 4.3, Let C e a nonempty closed and convex subset of X and T 2 Q x C — C a random operator satisfying
the condition (2.5) with RE(TY # . Let plae) be a random fived point of T and |x,(w)] be (RSP) admitting the
following restrictions:

(i) Ly, =0

(iiy 0 <y <yl 21}

(i) Hm o () =0, m o) =0, hm w,Gey =0
[Tt RS TN =i
Phew ptoe) is Bochner infegrable and (RSP} s almost surely T-stable.

Proof. Putr=s=1= 1, 041 = s ttyn = 1 = Bua = By Pup = 1 = Bus Yua = Yo = 1 =y in the proof of
Fheorem 4.1,

Theorem 4.4, Lot C b a noncmpiy closed and comvex subset of X and T : Q x C — Ca random operator satisfying
the condition (2.5) with RE(T) # o Let plw) be a random fixed point of T and {x,(w)] be (RM) admitting the
followoing restrictions:

() Loy, =w

iy U<a=sn,nz=1)

(iif) lim i) =0
Then plze) is Bochner integrable aid (RM) s almost surely T-stable.

Proof. Putr=1,s=1=10, tt,1 = ity tpe = | =ty in the proof of Theorem 4.1. O

Theorem 4.5, Let C be a nonempty closed and convex subsef of X and let T, : Qx C — C, 1 =1,2,3 be three random
aperators satisfying the condition (2.8) with CRF = |"11  RE(T)) # ¢. Let ptw) be a conmon random fixed point of
the random operators (T, 1= 1,2, 30 and |x,(w0)) be the radom SP algorithm of three operators with errors defined
as follorps

Vet (00) = (1 = o hneGey 4 e T (e yu(e)) + (i)

yalie) = (1 = B yle0) + B, Talae, zq () + 0, () (RSPTO)

o) = (1 = 1)y tae) + 1, Talio, x(te)) + wy, (0),

where D Go)l, TogGe ), L ()l are sequences of measurable mappings from € to C with ‘:..;'j u, (w)dp(w) < co,

vy dui) < oo, £ (w) di(e) < coand 0 <y, By, < 1. Then the common random fixed point of the
Jia i i I I JI i ’ .

randony operators [T, 71 = 1, 2,3 is Bochmer integrable ifand ondy if for all w € €3, lim inf L.J‘f{,\',.{it'), CRE)(w) =

L, J"Jil'l'-'l'dll'l’l'l
j [[Tize, (o)) = Slalldplzey = 0 mmplies ([T (w0, £(z0)) — SGw)l| = 0.
Jo

Proof. Verbatim repetition of the proof of Theorem 3.11 and is omitted. [

5. Conclusions

We have stucied Bochner integrability of random fixed point and almost surc stability with respect to
ranclom Kirk type algorithms of generalized ¢-weakly contractive operators on a separable Banach space.
Our results include generalization, reflinement and random version of some well-known results:

(1) Our Theorems 3.3 and 3.4 extend and generalize, respectively, Theorems 1 and 3 by Zhang et al.

34]
and provide random version of Theorems 3, 4, 5, 10-11 by Rhoades [29] and many results giveﬁ&'{‘TE STED

book of Berinde [5].
\1/\/\/\ |
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(2) Qur fixed point resull, Theorem 311, corrects and sels analogue of Theorems 3.1 and 3.4 by Okeke and
Abbas [27].

(31 A random analogue of Theorems 206 and 24 by FHussain et al. [12] is given in Theorems 3.4 and 4.1,
respectively,

(h) Theorem 3.7 extends and provides random version of Theorems 9-10 by Gursoy and Karakava [Y].

(3) Stochastic generalizalion of Theorem 8 by Kumar el al. [23] is presented in Theorem 3.9.
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Objective: The objective is to obtain the stresses due to strip loading in orthotropic plate lying over an irregular isotropic elastic
medium.

Methods: Anti-plane strain problem with perfect bonding boundary conditions following by Fourier Transformation on the equi-
librium equation are used to obtain the solution.

The deformation field due to shear line load at any point of the medium consisting of an orthotropic elastic layer lying over an
irreqular isotropic elastic medium is obtained. The anti-plane strain problem with the presence of rectangular irregularity is con-
sidered. In order to study the effect of irregularity present in the medium and of anisotropy of the layer, we computed shearing

slresses in both the media graphically.

Key Words: Orthotropic, Shear load, Anti-plane strain, Rectangular irregularity

INTRODUCTION

fas well known that the upper part o the Earth is recognized
as having orthorhombic symmelry. Orthorhombic Symmetry

15 also expected o oceur i sedimentary basins as a result of

combination of vertical eracks with a horizontal axis of sym-
metry and periodic thin layer anisotropic with a vertical sym-
meltry axis. When one ol the planes of symmetry in an or-
thorhombic symmetry is horizonal. the symmetry is termed
as orthotropie symmetry and most symmetry systems in the
Earth crust also have orthotropic orientations (Crampin')

The problem of deformation of’ a horizontally lavered elastic
material due to surface loads 1s ol great interest in geoseienc-
es and engineering. In material science engineering, the ap-
plications related to laminate composite material are increas-
ing, Many works related w Earth. such as fills or pavements
consist of layered elastic medium. When the source surface is
very long. then a two-dimensional approximation simplities
the algebra and one can casily obtain a closed form analyti-
cal solution. The deformation leld around mining tremors
and drilling into the erust of the Earth can be analyzed by the
deformation at any point of the media due to strip-loading. It
also contributes for theoretical consideration of voleanic and

Corresponding Author:

Dinesh Kumar Madan, Department ol Mathematies. Chaudhary Banst Lal University, Bhiwani-127021, India;

E-mail: dk_madaani@redilTmail.com

Receivedia oo

seisimie sources as it account for the deformation ficlds in the
entive medium surrounding the source region, It may also
find application in various engincering problems regarding
the deformation of layered isotropic and anisotropic clastic
medium (Garg et al’, Singh et al’).

The study of static deformation with irregularity present
in the elastic medium due to continental margin, mountain
roots ete is very important to study. Chattopadhyay®. Kar ¢
al’. De Noyer”. Mal”, Acharya and Royv" discussed the prob-
lems with irregular thickness. Love” provided the solution of
statie deformation due to line source in an isotropic clastic
medium. Salim' studied the effect of rectungular irregularity
on the static deformation of initially stressed and unstressed
isotropic elastic medium respectively. The distribution of the
stresses due to strip-loading in a regular monoclinic elastic
medium had been studied by Madan er a/''. The effect of
rigidity and irregularity present in fluid-saturated porous
anisotropic single layered and mululayered elastic media on
the propagation of Love waves had been analyzed by Madan
¢t ol and Kumar er al' respectively. Recently, Madan and
Ciabba' studied two-dimensional deformation of an irregular
orthotropic elastic medium due to normal line load.
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In this paper, we have obtained the closed-form expressions
tor the displacement and shearing stresses in a horizontal or-
thotropic elastic plate of an infinite lateral extent lying over
an irregular isotropic base due 1o strip-loading, Numerically,
at different sizes of irregularity. we have studied the varia-
nons of shearmg stresses with horizontal distance and it has
been observed that the shearing stresses show sigmificant
variation with horzontal distance at the different depth lev-
els.

PROBLEM FORMULATION

Consider a horizontal orthotropic elastic plate of thickness H
lying over an infinite isotropic elastic medium with x —axis
vertically downwards. The origin of the Cartesian coordinate
system (v, v, x,) is taken at the upper boundary of the plate.
Ihe ur[hun-uiﬂu elastic plate oceupies the region (< X <H

und is deseribed as Medium | whereas the region x, > H s
the 1sotropic clastic half space over which the plate is lying
and 15 deseribed as Medium 1. (Fig. 1)

Suppose a shear foad £ per umit area 1s acting over the strip

x| A ol the surface v, = 0n the positive v ~direction, The

boundary condition at the surlace v = 0 is

<h
>h

~P|x,
Ty
0fx,

(n

Fhe rregularity 1s assumed o be rectangular with length 24

and depth o, The equation of the rectangular irregularity may

be represented as

_ Ja’ X |sg

X = F,u( (.-'f:. ) = (2)
l s

d
where £=-—<< 1 is the perturbation factor.
2a

HEORY

The equilibrivm equations of Cartesin coordinate system

(%45, ) for zero body foree are

G ¥ T+ T, =0 (3)
Ty Flhs F 5 =0 (4)
r=!.| Tl t0; = 0 (5)

where @.0,.0, are normal stresses and Tos T Ty T Ty T

are called shearing stresses.

The stress-strain relations for- an orthotropice elastic medium

5 “"?7'3?}'-
Coordinator
IQAC
S.J.K. (frl. 24 o

: Jw;, & A g?’ "'..lr
i s = L -

s R

Kalanaur

wer lying aver an iregular isotropic elastic half-space

with co-ordinate planes as planes of elastic symmetry are

6,=C e +Ce+Ce, |
g, =08 +Crue+ .08,
O, =C,.¢ +Cye, +Cye,
= 2C,ey,
7, = 2C5¢, =
T, =2Ce, | -

where ¢.¢,,¢; are normal strain components and €,.¢,,.¢,;

are normal strain components. The suffices ¢ (i j=1.2.3.4.5.6)
are stiffnesses ol an orthotropic elastic material,

The strain - displacement relations are given as

du,
and e, ==L ee, (7)

- I(ﬂut ﬂl‘l
ax

@rg = ~
12 2 \dxa day

In terms of displacement components. the cquilibrium cqua-
tions can be written from cquations (3) — (7) as ¢

as 87y 2y

s |J u

Con nt + G5 +((-1'+(nﬁ)] e G+ Cg) g5 -=10
(%)

3 t4u Aty a2 u_ “u a%uy

u*iu)l“_]”l + oo 5o +Cu i +Cd'1 ‘“-‘i""cﬂ) e =0
(9)

i iy a2y %y A%

s T (G +Cz1] - o T Cas }f"'cu ]+C“n ,..‘ 0
{10y

Consider the field equation of an orthotropic material in anti
— plane strain equilibrium state as:

2 =0, uz =ug(xpx) (L

The non-zero stresses for an anti — plane strain cquilibrium

state are

[T

o o oy
T "'["5.’3‘,‘_ (12)
i
o iy
Tyz = Cas 3 (13)

Equilibrium Equations for an orthotropic elastic medium due
to anti — plane strain deformation are found to be

At i
ymiiiiog (14
dxf drs J

horem= |154%
where m = J: 2
At the interface (¥, x = €f (¥)). the boundary cunMrIE STE r

i t-'; =l
2. hy = ief ()rhy = ol = ief ()elh
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By using the boundary condition {13), we find the deforma-
o freld at any poine of the orthotropic elastic plate corre-
sponding to pregular contact between the orthotropic plate
and the isotropic elastic half space due 1o strip-loading.

Tuking the Fourier transform of the equilibrium equation
{14), we get

i ’ Lg% { Ly
—— —-Z(e- th)ii—_—'!f-u-ﬂ =0 (&)
g Err g Crr
The solution of the ordimary ditTerential equation is
E‘-é = (C]emlﬂ.r] + Cze—-mla‘cl.v]J (17
where € and C, may be functions of &
By using inverse Fourier transform, we have
P L™ e kI L a = KRy Y i 2k 9
W3 = 9w f—’((.l(, h = [.:;f’ Je dk (18)

Using equation (12), (13) and (I8), the shear stresses are

hy = I f (Cemi = G Joieb gk (19)
r;“ = %[—IIIH f_‘,((<‘1 e iy Cye ”'l'l'll'}r.*_""kﬁ'{“\'l (20)

Where 1, = meq, = 060 1. Using the boundary condition

(1}, we have

Ty = u;:-:*sm leh (21
Therefore
thy = =2 [ (FE) ety (22)
From (19) and (21). we obtain
€, —C = _f(%;l) (23)

The displacement in the isotropic elastic halfspace x, > H is

o L
W= 2

Coe i gixak g (24)

he coellicient ¢ is o be determined from the boundary

conditions,

From equations (12). (13) and (17). we obtam

' 4 ' i o, i s

i =& _ Cre~Iklmig=ivakpeape  (25)

thh = == " e Wirig=ixak g (26)
32 2 d = 2 2

Fquations (15), (18), (193, (200, (24), (25) and (26) yield the
relation

(27)

CI gt liel] (¥ =1 (_ g tm lelf(y) = f:_,

e €Ikl o)
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rthotropic elashe layer

lying over an irregular isotropic elastic half-space

TN —mef () e — 7 (4 mef () Camm W) 4 (k4 ef () Coerihiine
(28)
where T = Zand &' = &1
Il k
Solving (23). (27) and (28). we gt
R 8 b = e e 29)
Ly = ik k| (-‘.u~.-- R T L S el ,J l
. P sikh (& +et (rawge Tk oy
L= T Ll e ST RN Jmr f 0 W Ld = BT ,_) {“”
2P A kR A1) Selm =TT (v
= Ty (Hl'-r""""”" J-*:n-nrtl+r-i"""“--"'l)e ki
(31)

where V = (T'= 1)/(T + 1),

PROBLEM SOLUTION

By applying Fourier Transformation technique on equation
(2) we obtained

fk) = T sin(ka) (32)

Therefore, by using inverse transformation, we have

fly)= ,L_.rsiu(f-'u) eV dk = signla —x,) 4 signla +x,) (33)
where is the signum function,

By substituting the values of constants € .C, and C from
equations (29), (30). (31) in the cqtmtm-nc; {]8}, (l‘)} (20)
for Medium | and 1n (24), (25), (26) for Medium 1T and also,
substituting the value of f(v) for rectangular irregularity from
equation (33), we obtain the following expressions for dis-
placement and stresses.

For Med. |

PP e kh ey et I 2o (st =g st fa e Y Fo g
W = T (J L Ve ! )J(f + 1
Lr‘,"-ullh‘}}(.-r'll. {- ]
? 2hmy,
Ty = —‘fli\'}llijll_l(—'—'—-—f ‘.”.' )
" T3+ anxr —h
L l‘ (___'%i*_%"_(_'-*_r.*f'i'_*_fsr'?_’s". s i) ta) )
£ s o (ane(signla — ¢, )+ signla + 1)) + ¥, ) = b

Lot ne(stgnla —

( Ta) 4 signta # )} =x) )I
- ¥ Lan S——— T —
v+ md 2ne(vignlu — ) + signlu b x)) —x) ) = 02

(33)
_Pm (h + %) 4 mixf
- 2
Al e [‘1 b “ — ) +minl
Z‘;“’" ]I (h+ 33 )+t (Zm{nyn(ﬂ —x) Fsignfa +x:)) + ,\.}
b= (h=x3)¢ +m‘{2ne(algu(u—u)+s|urr[u+a;]]+a.) [‘;(ﬂ

+ ¥ log

(h + x, 0%+ m*{2ne(signia — ;) + signla + v,)) = \,}
(h — 20+ 2 (2ne(signla - x;) rsmni!! TT) STE
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For Ned. 11

e N o . ’ ) téilon bemtvoi gy
o
(37}
T
i ehllm + Velsignin = xy) + signin +x,3) = x
_._:_—i'l—lr"n wn” ( I’J )
i v+ Eie{sgnd RS ETETITIT ORI § o |
v f 2h L C2mia 4 ¥k s = a0 & siiginfin Xy
+ \ WY S — - - } }?
=l Vi = L2l = 1)+ Belsagnin = ap) « st = a ) ) —a ) = h !I
s
Hu
T
2Ty
(h +x5)¢ +{[n| + 1)F[% qullu = i) signlo ¢ x.)]) = nl}-
+¥) | lng——r - -
th— r_-1 +{{n| D lstgnlo = 5,0 + signla + X)) .\,j

fit )+ (L2anfn+ 1) stgnfi -

vy ) + signia + :'_.I)-.\|}-l

r) 4 signle 4 500} - xy )

h—xg )+ l amr{n =13+

134

IUMERICAL RESULTS AND DISCUSSION

I this section. we mtend to examine the effect of irregularity

on the stresses due to shear hine load acting at any point of

the orthotropic elastic layer lving aver an irregular 1sotropic

hall space. For numerical computation, we use the values of

elastic constants of Topaz (Orthotropic) for Medium | and
the values of elastic constants ol Glass (Isotropic) for Me-

drume 1 given by Love”

Figures (2)-(4) and Figures (5)-(7) show the variation of

shearing stresses 77 and 7, respectively. with horizon-

tal distancetor different values of ¢ =1.1.2.14.1.6 and for
different depth levels x, = 0.5, 1.1.5 . Figures (5)-(7) clearly
show that for difterent values of) the difference between
shearmg stresses in magnitude significantly decrcases as the

depth inereasces,

Figures (8)-(10) and Figures (11)-(13) show the variation of

} . ‘
shearing T) and T\l': respectively with horizontal distance-

- 1.1.2.1.4.1.6. It has been found
from the Flgures (8)-(10) that for different values ol a. the

tor x, different values of g =

difference between shearing stresses in 7

niffcantly imcreases as the depth increases.

magniude sig-

CONCLUSIONS

Ihe explicit expressions for the shearimg stresses in an ¢las-
tic medium consisting of orthowropic elastic layer lying over
an drregular isotropic half space due 1o shear loading has
been obtained. The results obtained are useful 1o study the
statie deformation around mining wemors and drilling into

the crust of the Earth. The results are also useful to study the

Coordi}iafnr
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layer lying aver an irregular isol

ropie elastc hall-space

etfect of irregularity present between the layer and the halt-
space, Graphically, it has been observed that the difference
between the shearing stresses in magnitude in orthotropic
clastic layer decreases as depth increases due to irregularity
present.

FFurther, it has also been observed that in isotropic semi-
infinite half-space, the diflerence between the stresses in
mugnitude increases with the increase of depth. Thus, it has
been concluded that the stress distribution in a laver with ir-
regularity present at the interface is affected by not only the
presence of trregularity but also by anisotropy of the clastic
medium as a result of shear load acting over the strip of an
orthotropic elastic medium.
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Figure 4: Variation of the Shearing Stress 7,, in Med. | with
the horizontal distance x, at x,= 1.5.

igure 1. Section of the Model.

Figure 5: Variation of the Shearing Stress Tf; in Med. | with
T —+——————————the horizontal distance x, at x,= 0.5.

Figure 2: Variation of the Shearing Stress 7, in Med. | with
lhe horizontal distance x, al x,= 1.
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usigi _ _ ~Zaam  Figure 6@ Variation of the Shearing Stress 7., in Med. | with
the horizontal distance x, at x,= 1.

Figure 3: Variation of the Shearing Stress 7,, in Med. | with
the horizontal distance x, at x = 1,
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Figure 7: Variation of the Shearing Strass Ty in Med. | with
the horizonlal distance x. at x = 1.5,

Figure &: Variation of the Shearing Stress 77, in Med. Il with
the hornizontal distance x, al x = 0.5

Figure 9: Variation of the Shearing Stress 77, in Med. Il with
the horizontal distance x, at x = 1.

Figure 10: Variation of the Shearing Stress 7' in Med. Il with
the horizontal distance x, at x,= 0.5.

Ay Qven an iregular isotropic elastic hall-spage

1
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Figure 11: Varialion of the Shearing Stress 7 in Med. Il with
the horizontal distance x, al x,= 0.5.

Figure 12: Variation of the Shearing Stress /. in Med. Il with
the horizontal distance x, at x,= 1.

Figure 13: Variation of the Shearing Stress 7/, in Med. Il with
the horizontal distance x, at x, = 1.5.
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ABSTRACT

The fault-width and fault-depth of the geological fault are the important parameters for the study of
earthquakes. The width and depth of the faull nfluence the deformation field remarkably. The geomelry
of the fault plays & vital role in the study of crustal deformation. In this paper, a strike-slip dislocation model

deptf ratio (WDR) on the static hield, Both the uniform monaclinic semi-infinite efastic medium and two
perfectly bonded semi-infinite anisotropic elastic media are considered. Graphically. for different values
of W, (WDR), the vanations of displacement with horizontal distance from the fault have been depicted

Keywords: Exponential, Strike-slip, Faull-width, Fault-depth, Monoclinic, WDR.
Mathematics Subject Classification:74E1, 86A15

Journal of Economic Literature(JEL) Classification:C69

1. INTRODUCTION

The deformation of an isotropic and anisolropic elastic medium due to dislocation (uniform) has been
studied by many researchers (Press 1965, Garg el al 1996, Rybicki 1971, Sharma and Garg 1993,
Singh and Garg 1985) Kumar et al (2002) and Singh et al (2003) obtained expressions for the
displacements at any point of the two-phase monoclinic elastic media and semi-infinite monoclinic
elastic medium respectively due to uniform strike-slip dislocation. Madan ef al (2005) obtained
expressions to study the slatic deformation field in an orthotropic elastic semi-infinite medium due to
non-uniform slip on a long verlical strike-slip fault,

Chugh et al (2010) obtained expressions for the deformation at any point of two-phase medium
consisting of homogeneous orthetropic elastic semi-infinite medium in welded contact with
homogeneous isotropic elastic semi-infinite medium caused by non-uniform slip. Kumar et al (2015)
studied Ihe fluid saluraled porous elaslic layer over a semi-infinite non-homogeneous elastic medium
with a rectangular irregularity, Recently, Madan et al (2015) derived closed form analytical expression
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for displacement in monoclinic semi-infinite elastic medium due to exponential discontinuity along a
very long strike-slip fault which varies along the depth by keeping width constant. Gedara et al (2017)
studied the stalic defermation due lo non-uniform strike-slip fault in an orthotropic semi-infinite medium
wilh nigid surface,

Till now, mostly the study aof deformation field due to strike-ship fault with non-uniform slip has been
done by laking either the width of the faull or the depth of the fault constant. In this paper, we have
considered the vanations of faull with the width as well as the depth of the vertical exponential strike-
ship fault sitluated in monoclinic elastic semi-infinite medium and two perfectly bonded monaoclinic elastic
semi-infinite media. The results of Kumar et al (2002) and Singh et al (2003) for uniform slip models
along verlical sirike slip fault can be derived from the results obtained in the present paper, Numerically,
lhe variation ol dimensionless displacement in bolh the two models for different values of W,, (width-

depth) with dimensionless horizontal distance from the faull has been examined.

2, FORMULATION AND SOLUTION OF THE PROBLEM
21 Model | (Menoclinic Semi-infinite Elastic Medium)

Firstly, we take a monoclinic semi-infinite elastic half medium occupying the region x, = 0 and the x, —
axis vertically downward, We suppose that the strike of the fault is along the x; —axis and let there be
a vertical strike=slip fault of infinite length —w < x, < e and finite width W with non-uniform slip of

exponential type along the fault situated on x. —axis. Letl U be the fauit depth and W < D (Figure 2.1)

@)

&0 (0<h<D)

Monoclinic
Semi-Infinte
{(O' D ) Medium
1
X2

Fig. 1 Geometry of the fault for monoclinic semi-infinite medium (Exponential Discontinuity).
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Following Maruyama (1966}, at any pant of the monoclinic elastic hali-space due to long strike-slip fault
with i, as the unit normal to the fault section, the displacement field in terms of Green's function G, (x, &)

is given by
wlx) = AwlEY 0 (e & (E)ds(E) (1)
where Aw($) is the displacement discontinuity and
Gl &= Cupy f—lll?"fr'_ff.l'.l‘.l ' (2)
For monoclinic elastic hall-space

1
iy = - Sh Reinf{x; = & + qlx, —&)Hx, — &+ gxy — G611 (3)
In terms of polar co-ardinates. for fault-width L and of infinite length along the strike direction:

$o=leosd, & = hsind

n, = —singd, Ny = Coso

(4)
Equations (1) — (2) and voight notation for stifinesses
Il = 1,22 =2 2,33 94 3232413 25,128 {5)
give
wlx) = —%’ [, b Imlr.',,-_ e, = & 4+ g (x, = {J}(J—*-’-:l—) + (nyChs + r:2C.1_4)[q (x, —& +
o =) () ¢ (B - 2 ®)

where h = Aw(é)is displacement discontinuity and

2 =% mum 4 Esin 20)s = Oxy = Blxs —d))? + 127} (7
§%= ‘——— (1A + esin28)s = Cle, + 2ex) + Bla, + d)} + 224
A+Esin2d
Ve = —x; sind + (xy —d)cosd (8)
Y, = (x; + 2ex;) sind + (x5 — d)cosd (9)
A= cos?d + _'k'lll"i'l (10)
B=gcosd + ysind (11)
77
' P ]
v J
! - Principal
Coordinator Sat Jinda Kalyana College

Kalanaur (Rohtak) Haryana



Coordinator
IQAC
S.J.K. College, Kalanaur

International Journal of Ecological Economics & Statistics

C=cosd +85ind (12)
Cysj €

gme==Cusfe  y= G (13)

g =A== )= (14)

From figure 1, we have, for exponential variable slip along the fault

Il hih) = i — ft v ), QehasV e, (15)

where b, is the surface slip . As in the present case the slip is exponential variable slip (6 = 90%) so

that the point Q(¢,, &,) on the fault given by equation (4), reduces o

§1=0 &=h

ny =0, n, =1 (18)
Equations (7 — 12) yield
R = ‘ ([Ah—Cx; = Bas|® + A%xi ] (17)
§% = %‘I_t'[fla'r —C0x, 4 2ex,) + Bay | 4 2% (%, + 26x5)%) (18)
Yo =—x; (19)
Y, = 1, 42ex (20)
A=y, = (21)

By using equations (17 — 21), equation (6) simplifies to

i N
=3 )b exp(—="
w(x) = — [ ( tl_)' s I’”} ——tth
2nj 1, 4 g
J Fi(;'h - Xy = ¥xa )t + A2x])
3 . /s
A (xy + 2ex3) by exp(— )
2 ] o Hy+Realahn Hp dh (22)

l— [(ph —#(x, + 2Ex5) +yx 2+ A2 (x, + 2exy)?)
We expand exp(— “;ﬂ ) by infinite Taylor series and since ;—‘ « 1, therefore we may neglect the third and
higher powers in the expansion of exp(— "',f'“ ). Thus

ne

exp(— JI]ff;-,. =1 —Lr = 2 (23)

Substituting (23)in equation (22), we gel
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/ Il h?
. ' (=x)ho (1 =54 'z‘?fjl‘) i
X)) = o an
o ;i{]’ﬁ — &Xy — YA + A%x7)
B i L
A f i Sl i ZU“J dh (24)
2 'I]: ((yh = elxy + 26x,) +yx,)% + 220 + 2ex3)?)

Integrating using Wolfram Mathematica, the closed-form expression for the displacement varying with

fault width(VW) is obtained as

wlv) = w(m|™ (25)
where
b, (Yl — yx EX10 (vh + yx, —elx, + 28x,)
+;:[—I:)yl\| log((ph = yx, — ex)* + Fx7)

. 2 ” ”
+ (a4 2.1_).'-‘]hr-rl,((]*h boyxs —elx; + 2ex,)) + Pxf + 4622, x, +4£3A2x§)]
l,[h — X, — LL.L\
Ax, /

yvh 4+ yx, —e(x, + 2¢x,)
Alxy + 2exy)

by |
+ —— [{px, + £xy) tan

- !
Ve 3|
LI

F{—px, +#lx, + L—-z_]}t.nn"(

Ab ’ :
e |, (yxs +oexy) lop(2ex, (px, — vh) + (yx, — yh)E + e2x? + A% (x, + 2ex,)%)

T amepa !

+ yh
+ (x) + 2exs ) —yx,

be(x, + 2en ) lop{(ph + pag = ex, + 26x,)) + Axf + dedx xy + 47X 1';) +yh

+ yx, — &lx, + 2.\.\'.]‘

by [, - . yh —yx, — £x
- L (pixd + 2yexg s +efxf = Baxd)tan™! (-———-—')
,l ”]( ” ! 1 2 ¥ 1ev 2 1 A-‘fl

+ (y2xd = 2yelx, + 2ex,)x, + €2(x, + 2exp)

= !’li(-\-l

Yh + yxe — £lx + Zn'zi)l (26)

- Alx, + 2£x3)

Substiluting limits in (25), we obtain
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‘
) )’Jﬂ e ' WD ) y J’ ( | }3. '
olx) = = (2 DD =y, ) = 2ye o [ I S
twix preverel ACUAL ¥y Ly X))+ xi
22 . AW x,
2x2) tan™! —; ———
ke YEt ey (200 — W) = yxa (W — x3)
[& ) ) . ) y
- ﬁ_'r_vfr (292000 + pxy) = 2pe(x, + 2ex,)(pD + x3) + (62 =A%) (x, + 2ex,)?

AW (x, + 2ex;,)
(v + 2ex, 0% — e(xy + 26x,) 2y — W) =y, (W + x3)

+ yoxy ) tan™!

bo [\ o 0 W =YX~ Ex)? 4 2]
——— LA {p (D —ay) —xy) log —— —
Gy e ' B (yxs + £x,)% + A%x}
by . 8 by
_4rr'],.,a;.- Alxy + 2ex, { (D + xy)

—r(xy + 2ex,) ) lop

(W + pry —elx; + 2ex,))" + A%0f + 4edayx, + 46423
; 2 v .
(ya, = elx, + 2ex,)) + 4207 + dedx x, + de?A2xl

by

o W e (27)

Defining the dimensionless displacement and width — depth ratio through the following relations

= m[.r'J/,-h{ll Wo=W/p, X= ;_; Y= :_: _ (28)
Equation (27) reduces lo
| . . ”
V== (2y2 W, (W = pY) = 2yeX(yWo = ¥) + (8% = A2)X?
AW, X

+ Y2 tan ™!

XL eX (2 = Wp) = yY (W, = Y)
1
P

,‘._-_';—'-W,.:_'u{., PoY) = 2ps(X 4 2eV0(pW + Y)Y 4 (22 = ATN(X 4 2e¥)?

AW (X + 267)
(X 1 2eY) — 50X + 2eV)(2Y = W) — pViW, + ¥)

— L [ax(r(w, — ¥) — ex) log LRI E V] e A+ 260) (W + V) — (X +

FEX I T A= X ]

: i i
YW RV =N F 2V ) AN Y et Ay

2:¥)) log

eV : | e R (X%

{FY =€ X+ 26V)) AN 0AENY £ 482 A7 = 21Ty

£Y) (29)
2.1.1 Orthotropic Case

For an orthotropic elastic medium, we take £ = 0 . Equalion (29) reduces to
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() = - : (Zy Wty — Y =X+ Y+ Y5 tan ™ —— \;_Hi"'\__,_
i o (2y Wty — X : Tt
1| YW, X
= {2y (W = pY ) =X+ p¥= + V) tan” - —\}:—'I‘_‘_
4y | | XT=yY (W, + 1)
| - p(W, —Y)F + X° 1 2 y(Wp + V) + X?
—— Xy (W = ¥) log ———————— | = — | X/ Y e e
4y [ VI Ylog Y74 X2 ] 4?:;){ Vr(Wp +1)log Y7+ X?
1. .
e Pl (30)
2

2.1.2 Isotropic Case

For an isotropic elastic medium, we lake ¢ = 0, y — 1, The equation (29) reduces to

" I \ Wy (W = ¥) = X2 | Y8 tan e |
| = —— ¥ LV e e | ] o e e
b0 = g |V DA = PRt e YW, - 1)
= AN (W 4 ¥ — X2 4 y'..')l.m—: Wn X
R R S RV MW+ Y)
| (W, =¥ +X2] 1 (W, + Y)? + X2
= xS et YW 1) o
M‘A.H,. et I IM{AUI,, ¥log— 7
e __J'_ X (31)
n

Special Case

When D is sufficiently large in monoclinic medium, i.e. as D — o in equation (27) we obtain

’ L 1 YW =rra—ray = LW i pep=ela gt dExy ) - p(rxetExy)
wlv) == {mn {—— ] T = ) + tan (——-—-)_” )
- J__lilj (32)

The above result coincides with the corresponding result of uniform discontinuity after taking & =

90° and d = 0 as a particular case in the equalion (28) earlier obtained by Singh et al (2003).

2.2 Model Il (Two Monoclinic Elastic Semi-Infinite Media )

Here, we consider a homogeneous anisotropic elastic infinite medium consisting of two monoclinic
semi-infinite elastic media. The lower hall space (M,: x, > ) is represented as medium [ and the upper
half space (M.:x, < 0) 1s represented as medium [l with v, — axis vertically downward. The interface
represents the origin of the Cartesian coordinate system (., x,x,. We further assume that both elastic

media are homogeneous and manoclinic with x, = 0 as the symmetry plane. The interface between

two half spaces may either be smooth rigid, rough rigid or perfeclly bonded

interface conditions

i.  When the interface x, = 0 is of smooth rigid type, the condition is
O {00y ==10) =D (33)
ii. When the interface «. = 0 Is of rough rigid type, the condition is
il X =15 =1 (34}
81
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iii. When the inlerface v, = 0is perleclly bonded, lthe continuity of displacement and shear

stresses implies

talxs < O = wlXa = (),

(345)

Let there be an exponential variable slip along the fault with fault depth D, infinite length —w0 < xy < @

and finite width W, situated on 1. —axis with which is taken as vertically downward as shown in figure

2,

Medium Il
(Monoclinic)

P X4

L3
—_—

e"” (0<sh<W<D)

(0,D) Medium |
(Monoclinic)

Figure 2 Geometry of the Problem
Fallowing Ting (1995), the elastic fields as a result of F (line force) acting at (0, d ) of a monoclinic

semi-infinite medium in welded contact with another monoclinic semi-infinite medium are given by

- R{n(z% = qMd) = In(2'" = g*V'd)} (36)

't =
oMU

"J‘— R In(7204 — qthg) (37)

where R denoles the real part and an aver bar over ¢ denoles complex conjugate of 4''' and the

superseripl (1) is for Medium [ and superseript (2) is for Medium I, Here,

K = “——‘—r < (=1<K <1) (38)
=y Lgitiy =112 (39)
: (40)

et ATTESTED

82

'-__...a--—t

v Principal
Coordinator Sat Jinda Kalyana College
Kalanaur (Rohtak) Horyano

IQAC
S.J.K. Coilege, Kalanaur



international Journal of Ecological Economics & Statistics

M = (el ") >0 (41)

For the Medium /, w'' i the horizontal displacement and ¢!!) are elastic stiffnesses and for Medium /1,
' s the harizontal displacement and (., are elaslic stiffnesses. Equations (36) and (37)salisfies the

boundary conditions
=@ at x=20 (42)

Far the perfect contact. the displacements at any point are given by (Kumar, 2015)

i =48 b (T g 18 pag (43)
T Lo .\'| .

P — _.-.._ |" _I—-_J'J{I.' (44)
where

RE — (A -+, 5in28)s* = 2[Cx + R(xp — )]s + xF + 710z + d)F + 26x3(x — d) (45)

52 (A £ sin28)s* = ..‘[l.'-{\ + 28, %0 — BlXs +d)J]_\ +xl oy lan —d)? + 2ex (x —d) —4elx,d

(48)
2= (A + & sin28)s = 2|Cx; + (L&, A Lo ds sind)x, — Bdls 4 Xt 4 paxs + yid? + 26,30 %, — 26,0d —
2(Apds + g8 )dxy (47)
Yo = —xysind + (x; — d) cosd (48)
Y, = (x, + 26, 3) 808 + (32 + d)cosd (49)
Vo = = A, SN 4 Xa(dzcosd — (4, e b sind) — A cosdd (50)
1, = casty by sind (51)
B, = £ cosd + yysind (52)
G, =cos8 + & sind (53)

in figure 2. exponential variable slip along the fault has the same behavior as that in fig.1 and using

equation (4), equations (15 = 53) yield

Ry (A= Lxy — .'3'\_|. + AN} (54)
St = ~{[Ah = C0xy + 2ex,) + B, |* + A2(x, + 2ex5)%) (55)
Ry = 'I{{_|"'”‘ - Xy = (Cig + AjA)xg]” + [Agwy + (A — A¢ )1 (56)
e (57)
Vi = (¥; + 2%5) (58)
Yo = —dyxp— xa(A 6 — AvEy) (59)
L =B=n, G=¢ (60)

Substituting equations (55 — 1) in equation (43) and eqgualion (44), we gel

83

N

Coordinator
IQAC
S.J.K. College, Kalanaur

alangur fROhiclk)

ATTESTED

yYTr/ % o
Pfincipql

College
Haryang



International Jeurnal of Ecological Economics & Statistics

o Ty (1 _K
i Th (i l_‘\|i|||.."' 4 UJ —{ {a, + xq(x ‘—J'l]}(.ﬁ-.s;'—s—f)
{1 K
e e+ e0n-0) (- 52)
ol ( ¥ )La'\' St
3 |: i | L R h'\:l\l
—_— 4 e s
\ R? si /)
14K = 41
“ = _)-J'-,\-'-] M:f - ”_,;,,5!—r ey i )
=R — &)+ A (A%, ‘—a1'|i'l}l|; 73
where
) (1) f 1) _Al2) 2y
gp= =G /l”.” v k== [0,
o = GRS =il
A= (=) Ay =(pa—&l

(61)

(62)

(63)
(64)
(85)

Expanding ux;:{ ~h, 1) by Tayler infinite Series Expansion as in equation (23) and neglecting the higher

power terms of ; (= 3) and subslituting in equation (61) and equation (62) gives

| T h 3 T ; 1
=g 2154 2 ]l -6 4= 5
( " fi. n

{ | (\ (X, :I]I R .\.I_.f
A(L_h+"h‘h)tll’

+ I -—J--_ N LA

it st /)
¥ L +K fi ’:) (n .
fa} = ‘E‘.’F‘T .! fJ,,( 1 H W |—Ir (x, + &1~ E[!F)

i T ey il

=~ O e (e, = e h) 4 A (Asxy — A DY = s

IR

K )
557

Inlegrating equations (66 and (67) and using the dimensionless relations

wit = J'II-,“':H_ w'H'= .f}l,-,“"’l

we obtain the explicit expressions for displacement as
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(70)

2.2.1 Orthotropic Elastic Medium

When the medium | is orhotropic. we take &, = 0 in equalion (70) and obtain the corresponding

displacement

Jotha = —ﬁ 2y Wp(Wp — 1, ¥) + py Y2 = X?) tan™ PT%|
¢ #\l'_ (=2p, W, (Wp + py¥) + 7y ¥ = X%) tan™ xz_—%%ﬁi
= vl JhX W, =) |fJ_L[W|
+ i_:i \.-'IFX (W, +Y) ing%;j Xsll
| 1_]r NZL (71)

2.2.2 lIsotropic Elastic Medium
When the medium | is isolropic, we take =, = 0.y, = 1 in equation (70) and obtain lhe corresponding

displacemenl as:
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Special Case

Taking 0 as sufficiently large (i.e. as D — o) we oblained

by =¥ih 4 2 4 80 ¥ Xp TEX
= —ltan | ——————tap ———
in Ayxy Ay xy
; byK iy pift + 6 — w (x) o+ 2e1x,)
27 Aylxy + 28,x,)
L ixe—& (%, + 280xy)
— tan ™ o (73)
Aylxy +28,x;)
{1 —K)b ¥k = gy Eans + x3) — Apdaxs
apt - Ukt - : = (74)
o Ephdzyy — A (3 + ;‘._r__j

The above results coincide with the corresponding results of uniform discontinuity after taking & =

20 and d = 0 as a particular case in the equation (33) and (34) earlier obtained by Kumar et al (2002).

3. Numerical Results and Discussions

Here, we use the different values of anisotropic parameters and obtain the change in the
displacement with the change 1 the horizontal distance from Lthe fault trace at surface and sub-surface
levels by using MATLAB graphical routines and to investigate the effect due to W-D ratio, we take the
different values of width-depth ratios as W' = W, = 0.3, 0.5 and 0.8,

For numerical purpose, let the material for monoclinic elastic half-space be Dolomite (Madan et al,
2011). The change in displacement with change in horizontal distance from the fault trace for different
values of W, are depicted in figures (3 — 5). These figures are depicting the change in displacement U
aly = Oie(surface) v = 0.5 1.e.(subsurface) and at the depth point ¥ = 1 for Dolomite.

ALY =0, the discontinuily is same for all the three values of W, ratio and is equal to 12 in
magnitude. ALY = 0.5, the disgontinuity decreases to 8 in magnitude for W, = 0.5,0.8 whereas
disolacement becomes continuous for IV, = 0.3. ALY = 1, displacement is continuous for all values

of I/,,, It is interesting to note that the effect of discontinuity disappears as we move away from the
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Fig. 5 Monoclinic Semi-infinite Medium : ¥ = 1, y, = 1.043, & = —0.063.
(Dalomite)

3.1 Variation of Fault with Width-Depth Ratio

By making use of the Dolomite material qiven by Madan et al (2011), Olivine material given by Verma
(19680) and Topaz given by Love (1944), the graphs are plotted in MATLAB graphical routine. To
axamine lhe effect of Ihe faull- variation wilth widlh-deplh ralio in case of lwo perfeclly bonded
anizotropic elastic hall-spaces, the medium | is considered as Dolomite which is monoclinic and
medium // is considered as Topaz |e. Orthotropic Elastic medium. For different values of W}, , the
variations of the displacement with honzontal distance are shown in figures (6 — 11). Fig. 6 shows that
the discontinuity is egual o 2 in magnitude for all W}, ratios (W, = 0.3,0.5 and 0.8) at the surface Y =
0in Medium | of maonochnic two-half spaces (Medium /. Dolomite, Medium /I: Topaz). Further, at the
subsurface ¥ = 0.5 (Fig. 7), the discontinuity increases lo 8 in magnitude for different W, ratios and
significant difference increases for W, = (0.5 and 0.8 whereas it becomes continuous for W, = 0.5 and
al V' = 1 (Fig. 8), the displacements are conlinuous for all Wy, ratios,

Fig. 9 shows that the disconlinuity 1s equal to 2.5 in magnilude and increases rapidly for all W), ratios
(W, = 0L3,0.5 and 0.8 at the surface (Y = 0) in Medium 1 of monoclinic two-half spaces (Medium
Dolomite, Medium II' Topaz). Further, at ¥ = (L5 (Fig, 10), the discontinuity is 1.5 in magnitude for
different W, ratios and significant difference decreases rapidly and at ¥ = 1 (Fig. 11), the discontinuity

decreases rapidly.
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Fig. 11 Monoclinic Two-Hall Spaces: ¥ = 1, y, = 1.043, &, = —0.063, £ =10, K=0.644.
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4. Conclusion
The effects of the exponential discontinuily and anisotrapic paramelers on the displacement are
shown graphically. From the obtained results and graphs. we conclude that
1. The discontinuity decreases in magnitude for different width-depth ratios as we move from
surface to some depth point and afler a specific depth, the displacement becomes
continuous
2. The displacement freld is significantly influenced by the nature of interface between two AT TE I
anisotropic elastic half-spaces. The discontinuity increases in magnitude for different values : S TED
91
\wﬁ g
Coordinator Principal
IQAC Sat Jinda Kalyana College

S.J K. College, Kalanaur

Kalanaur (Rohtak) Haryana



International Journal of Ecological Economics & Statistics

of width-depth ratio with increasing depth and after certain depth, the displacements are
cantinuous for all the values of width-depth ratios.
The solulions ablained for these models may be helpful in modeling the lithosphere deformation due

to faulting.
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Literacy and sex ratio are two important features of demography. The social and econoic

Article History
development partially depends upon the level of literacy. It is assumed that literacy plays
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an important role for the betterment of sex ratio. Sex ratio is represented as females per
thousend males. According to census of India; Average sex ratio in India was 933 in
2001 and showed a positive change in 2011 and sex ratio reached upto 940 females per
thousand males. Haryana has a low sex ralio, trends show that sex ratio was 867 in
2001 and tends upwards to 879 in 2011. But still il is below the national average
Literacy being antother important aspect of demography, deals with the ability to read
and write any language. This paper focuses on the correlation of literacy and sex ratio
on tahsil level in Haryana. During 2001 there was a low and positive correlation between
both but it became negative moderate correlation in 2071. Which shows that in Haryana
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correlation.
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both are inversely correlated.

1. Introduction

In the present study the two important aspects are lileracy
and sex ratio an important indicator of human resource
development; literacy has a number of definitions and they vary
from place to place. One of the general definition is as ' the
ability to read and write in any language. But one should
exclude the population from 0 - 7 years while talking about
literacy. Literacy is accepted as a tool that can bring sacial
reforms. economic transformation, occupational competence
and development of specific skills, Accoring to Majid Hussain
(2008}, " Literacy reflects the socio economic and cultural setup
of a nation, ethnic group and social communily.

According to census of India 2011; literacy may be defined
as the ability to read and write with understanding. The other
component of the sludy is sex ratioc which represents the
number of females per thousand males for the developing
countries like India. While the situation is inverse for the
developed countries like UK and U S.A. In these developed
conntries sex ratio is represented as the number of males per
thousand females. As both of these attributes ( sex ratio and
literacy) can reflect the actual situation of the society and play
an important role for various planning types for population. Both
of these are correlation to each other either in the way or in
negalive séance. Literacy rate in 2001 and 2011 for India are
64.8 % and 74.04 % respectively while in Haryana literacy
rates are comparatively high for 2001 and 2011 as 67.91% and
75.55% respectively. Sex ratio for India during census 2001
and 2011 has 933 and 940 females per 1000 males
respectively.

2. Objectives

The main objectives of the study as -
~ To evaluale the impact literacy on sex ratio from 2001
lo 2011,

-~ To view {he spatial change and pallern of literacy rate
and sex rallg in Hélyana ( lahsil wise)

Coorﬂim? the cheanging correlation belween literacy
IQAE@ and sex ratio from 2001 to 2011,

3. Study Area

In terms of latitude and longitudes Haryana extends from
27°31 Nto 30° 35 Nlatitudeand 74° 28 Eto 77° 36 E
longitudes. It is located in the northern part of India which lies in
Ganga plain. Initially it was a part of East punjab and it was
carved as a new state on 1 nov.1966. Chandigarh is it's capital.
The word Haryana is derived from sanskrit which means Hari (
the God Vishnu) and ayana ( Home) i.e. home of the God
vishnu. Haryana is borded by Punjab, Himachal pradesh in the
north direction, while the in the west and south direction
Rajasthan is situated. The eastern border is well defined by
river yamuna and uttar pradesh. It surrounds NCR from three
sides i.e. northern, western and southern sides. Present study
of Haryana deals with tahsil wise sex ratio and literacy rate
from 2001 to 2011 as well as their correlation for both decades.
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4. Data source and Methodology

In our present sludy, mainly secondary dala regarding sex
ratio and literacy is taken from census of India for 2001 and
2011. For the analysis of spatio - temporal change in literacy
rate and sex ratio, mainly spearman's Rank correlation is used.
In Spearman’s Rank correlation the formala is represented as

6> D:

F=1

n{n=-1)
Where D = Difference of R1 and R2
n = Total number of items

In the Spearman's Rank correlation the highest entry of
bolth the variables are ranked as first, similarly the other
enteries are also ranked. These ranks are named as R1 and

R2. after calculating the ranks; difference in R1 and R2 is
calculated with positive or negative symbols. Difference square
is calculated for each entry point and the summation is there.
Then by using the above given formula rank is calculated eilther
positive or negative. Positive rank shows that both the
indicators are correlated positively, which means that the
change in one indicator will positively effect the 2nd one. and if
one is increasing then the other is also increasing. The
negative ranks shows that if one variable in increasing then it
adversly effect the second one.

Besides this different cartographic techniques are also
used for 74 tahsil of Haryana; like bar digrams choropleth map
etc. The districts and tahsils of Haryana are given below in
table 1.1.

B Table 1.1:
[ Sr. No. ‘ Tabhsil _’ District Sr. No. Tahsil District
| — o [ i
I 1 Naraingarh | 38 Narnaund
| 2 Armbala | Ambala 39 Hansi
: 3 Barara ‘ 40 Bawani khera
| 4 Jagadhri 'i 41 Bhiwani
| e R sl | = LS ]
_— | [
| 5 ) __B'.tf:bijur - | Yamunanagar L 42 ) Tosham
‘ 6 Chhachhrauli | 43 Siwani
SRS, S = - i.___ - el . . i
|7 | Shahbad | 44 Loharu Bhiwanl
| g S B ks
| I ez > | "
[ 8 Pehowa | Kurukshetra 45 Dadri
‘ g Thanesar 46 Badhra
10 Guhla 47 Maham
‘_ 'If ) K;n;thal i Kaithal 48 Rohtak Rahtak
[ 12 Fatehpur pundri 49 Sampla
e — —
! 13 Nilokheri 50 Beri
| 14 Indri 51 Bahadurgarh
15 Karnal 52 Jhajjar Jhajjar
- — Karnal
16 Assadh 53 Matenhail
17 Gharaunda ‘ 54 Mahendargarh 1
—_— - —_——— - 1 Mahendargarh
i 18 Panipat | 55 | Narnaul
| - Z | OO SUI (———— | Evcerd =
: g 5 |
L 19 _J._r_a_rf__ | Panipat | 56 Kosl
20 Samalkha I 57 Rewari Rewar
21 Gohana i 58 Bawal
22 Ganaur |- 59 Pataudi
23 Sonipat Senipal 60 Grugram
. 24 Kharkhoda 61 Farrukhnagar ’
== = Grugram A rTEST
| 25 Narwana 62 Manesar . D
_ 26 !_Jind ! 63 Sahna
...... SE S, .4
| 27 | Julana | Jind 64 Taoru - M
, | A ‘
, 3
28 f\||| Saﬂdon_ i i 65 Nuh Newst it
. g | Ratia 66 Ferozepur jhirka
Coordinato \ |
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I e -

[ Fatehabad

— =

| 30 | Tohana 67 Punahana
| 3 Fatehabad | 66 Faridabad
T Faridabad

\ 32 Dabwali | 69 Ballabgarh
| 53 Sirsa ‘ 70 Palwal

34 Rania Sirsa 71 Hathin
==3 | SIS TNE TR 0 Palwal
| 35 | Ellenabad | [ Hodal
I (-
. 36 | Adampur | 73 Kalka
I ' - —{ Hisar Panchkula
| 37 I Hisar 74 Panchkula

5. Results and Discussion

Literacy and sex ratio are two important indicators of
human development index. Literacy is explained as ' If a person
can read or write any language with understanding then that
person is termed as a literale person; Here literacy rale is

calculated to understand the changing scenario in Haryana
from 2001 to 2011 (tahsil wise). Literacy rate is of two type as
crude literacy rate and effective literacy rate. both of these can
be expressed in the form of following formulas.

Number of literate person s g

Crude liferacy rate =

Total population

_ No. ofliterate persons sevenand above ¢ 1q

Effective literacy rate

Literacy rate is explained in percentage. Crude literacy rate
include whole literale population while effective literacy rate
excludes the population below seven years so effective literacy
rate is moare useful for understanding spatio - temporal
changes. Literacy rate in India is 74.04 % for census 2011,
while it was 64.84% during census 2001. In case of Haryana
literacy rale during 2011 and 2001 was 75.55% and 67.91%
respectively. The literacy rate of Haryana (tahsil wise) for 2001
and 2011 is shown with the help of bar diagram in fig, 1

Sex composition of a population refers to the balance
between male and female in any population. It can be
expressed either in the form of proportion of a particular sex in
the population or as a ratio between the population of two
sexes. There are explaining sex ratio, the first one gives the
number af males per hundred females or number of males per

Coordinator €

IQAC
Q.1 K. il Kalanaur

Pooulation aged seven and above

thousand females in the population and is the most widely used
measure of sex ratio the world over. On the country the second
provides the number of females per hundred males or number
of females per thousand males in the population. In India
second method is used:
Sex ‘o = Noof females .

SER RIS No of Males X 1000

Sex ratio, being the second important indicator of human
development index; have a worst condition in Haryans in 2011
and 2001 (in India) sex ratio was 940 females per thousand
males and 933 females per thousand males respeclively.
haryana is showing sex ratio below national average in both
census years 2011 and 2001. It was 879 and 861 females per
thousand males respectively for 2011 and 2001. Haryana is
ranked at 31st in case of sex ratio in states and UTs.
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Table 1 2 Tahsil wise highest and lowest literacy rate and sex ralio for 2001 and 2011.
et = S T e o : :

: Literacy Rate Sex Ratio
| NSO 2001 2011 2001 2011
i Highest l Lowest Highest Lowest Highest Lowest Highest | Lowest
[ _1 _____ Grugram | Ferozpur Jhirka | Hrugram Punahana Kosli Panchkula Kosli | Manesar
| -
| (e880) B (2975) | (87.02) (49.26) (943) (810) (925) (779)
2 Ambala Nuh | Ambala | Ferojpur Jhirka | Narnaul | Bahadurgarh Ratia Ganaur
L | e (83:69) (84.15) | (5159) | (919) | (820 | (918) | (840) |

Based on map 2

In Haryana the lahsil wise literacy rate for 2001 and 2011
is shown in fig. 1.1. This depicts that during 2001 the highesl
literacy rate was in Ambala tahsil (68.33%) and Gurugram
tahsil (68.80%) while two tahsil having lowest literacy rate
wewe Nuh (33.63%) and Ferojpur Jhirka (29.75%) in Mewat
district.

In 2011 the two tahsils having highest literacy rate were
same as in census year 2001 i.e. Ambala (84.15%) and
Gurugram (87.02%). The literacy rale in 2001 were below 70%
crosses 80% during 2011, The two tahsil having
lowest literacy rate were in Ferojpur Jhirka ( 51.59) and
Panchkula (49.26) in Mewat district. The analysis shows that

while 1L

the lowest literacy rate exists in Mewat district. The situation is
somehow literacy rate.

For a proper understanding of ground level reality; the
study of sex ratio at tahsil level is important. For this sludy
tahsil of 2001 and 2011 are considered.

Considering the sex ratio tahsilwise in Haryana; two tahsils
having higest sex ratio in 2001 are and lowest sex ratio in
Bahadurgarh (820) in Jhajjar district and Panchkula (810).
During 2011 the tahsilwis sex ratio was showing average
negative change i.e. the thasils with higest sex ratio were Kosli
(925) district Rewari, Ratia (918) Fatehabad district and the
lowest sex ratio in Manesar (779) in Grugram district and
ganaur (840) in Sonipat District.

Map -2
(A) (B)
HAKRYANA JHARYANA
TAHSIL WISE LITERACY RATE TAHSIL WISE LITERACY RATE ;
2013 1 (e 2011 0 i
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R — Table 1.3: Tahsils wise categorization of literacy rate in 2001 and 2011.

F-G.'c:.'.c : J_r’e.-n” . Tahsils

High | 2001 l Nil

Literacy }’ e
| Rate | Panchkula.Kalka.Ballabgarh.Faridabad.Sohna.Manesar,Farrukhnagar.Grugram.Pataudi.BawaI_Rawari.Ko
' (75 and ‘ 2011 | sli.Narnam.Mahundergarh.Maienhai!.Jhaiiar.Bahadurgarh.Beri.Samp1a.Rohtak.Maham.Dadri.Naraingarh.A
L Abeye) | mbam.ﬂarara.Jag-;tdhn.Shahhad.Thﬁnesar.Kamal.Panipat.Gohana.Ganaur.SonipaLKharkhoda.Bhiwanl

2001 Ambala,.Sonipal Faridabad, Grugram mwa-iri

Moderate ' S ~ —— -

Litaracy | _ Huual.}';:!w:al.Tnorrn.Bi!aspur.Chhachhrauli,Przhawa.Guhla,Kailhal.Falehpur,Pundri,Niiokheri_Indri,Assandh
| Rate | 2011 | .Gharauuda,lsrana.5ama1kha.Narwana.Jind.JuIana.Safidon.Tohana.Falehabad.Dabwali.sirsa,Raﬂia.Eliena
| (85 - 75) | l.s;-nti,Adarnpu[.H|sur.Narnaund.Hanm_Bawamkhera,Tosr:am.Snwani.Loharu

o o | _I Nﬁﬁwgé_rh.Baréré.Eéécﬁ?ch@:ﬁh_rﬁli,éh_ahﬁﬁ.Pehowa‘_T_Hanesar‘Gohana.GuhIa,Kaithaﬂiokheri.Ind
| ! ri,Assadh.Gharaunda.Panipat,israna,Ganaur.kharkhoda.Namana.jind.Julana.Saﬁdon,Ratia.Tohana.Fateh

i 2001 | abad,DahwaI|.Sirsa,Enenabad.Adampur.Hisar.Namaund.Hansi,Bawan|Khera.Bh|wan1.Tosham.Siwani.Loh

Literacy | aru.Panchkula.KaIka,Hodal,Halhin_Palwal.Baiiabgarh,Kosii_Narnsul_Mahendargarh‘Jhajjar.Farozpurjhirka.
| ';’”"’ cis Nuh,Taaoru.Sohna_Pataudi,Bawal,Bahadu(garh.Beri.Sampla,Rohlak.Maham,Dadri

(Below - 65) e =

= [ 2011 | Hatin Punhana Ferozepur Jhirka,Nuh, Ratia

=

Based on map

Table 1.4; Tahsils wise ca_!cgcrizatiorgﬂ sex ratio in 2001 and 2011

Sex Ratio

-l-‘hg_(l_SGx
| Ratip
{900 and

Abaove)

| Moderate
Sex

| Ralio
870 -890)

LLow Sex
| Ralic
| (Below Ng70}

2 (A) and 2 (B)

=1

| Years | Tahsils
e s S L e B ——————— —
2001 | Loharu Mai‘;cl\Licr{;arh.l‘larnaul.Kosl-,B;lwal.Fcrujpur Jhirka
Yt =
| 2011 | Cht1achhrauh.Pchowa,GuhIa.Dabwah.l_oharu,Kosli.Patudi.Farruknagar.Ferojpurjhirka.Punahana‘Ralia
[ ?001_ | _t\lérayangarl_ﬂ-:afara,S-héh'ﬁa_d.Péhowa.i-ndmssﬁdr_\._[:l_a'mbﬁaﬁa-.Féléhﬁcﬁébﬁil.@?ﬁaﬁﬁbaﬁn
[~ | dampur Bawanikhera Tosham S:wani,Dadn_Ruwari,Paiaud1.Sohna.Taoru‘Nuh.Halhin
j ] Pﬂlwai','kalk:q'_Tnorl:_Nmainqarh,Amnah.Barara,BiIaspur,Shahbad,Tnhana.Fatehabad,snrsa.Rania.Ellenaba
| 2011 d Adampur Hisar Bawanikhera Tosham,Suwar!i.Dadri.Badhra,Rohtak.Jha}laf.Mahendargarh.Namaul.Rewa
ri Bawal Nuh, Faridabad Ballabhgarh - _3 ) » ﬁ{q ESTE
| | Kalka_Panchkila,!-\mbala.Jagadhri,Chhachrauln.Thanessar,guhla,Kailhal,Ni1okheri.Gharaunda.Pa pR fEra®
| 2001 | na.Gohaﬂa.Ganaur,Sonipal.Kharkr'noda_Narwana.Jind.Julana,Hisar.bhiwani.Meham,Rohlak.Beri.bahadurg- ;
' arh,ﬂm;jar,Gurugram,Faridabad,BalIabgarh,Palwal.Hodal, o

k— ; 'l .Jagacihn'_F’anipal,lsrana.Sumalkha.Gohana‘Ganaur.Sonipat,Kharkhoda,Jind.Julana,Saﬁdo A
| nsi.Bhiwani,Maham.Sampla.Beri.Bahadurgarh.Matenhail.Gurugram,Manesar.Sohna,Panchkula
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Table 1.3 expresses a great change in the calegories for
lileracy rate and sex rato for 2001 and 2011. The
calegorization is shown in fig 2(A) and 2 (B) and discussed as
pelow. Low literacy rate (below 65%) : - In this the tahsils
having literacy rate below 65% are cnsidered. In 2001 there
were 59 lahsils out of 84; while in 2011 there were only 5
lahsils out of 74. Means there is a greal transformation from
2001 to 2011 and the literacy rale has increased at fast speed.
Moderate literacy rate:- This calegory represents the literacy
rale between 65% to 75%. In 2001 there were only 5 tahsils out
of 64 while in 2011 there were 34 tahsils out of 74. High
literacy rate:- This category consists of literacy rate above
75%. In 2001 there was no tahsil in tis category while in 2022
there were 35 tahsils. Hence the literacy rate shows a drastic
change from 2001 to 2011. There is a greal positive change in
2011

The categorization of lable 1.4 also expresses the
changing scenario of sex ratio from 2001 to 2011. As in fig 2(C)
and 2 (D). This is explained as below. Low sex ratio:- This
category consists those tahsils which have sex ratio below 870.
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In 2001 there were 31 lahsils while in 2011 there were 23
tahsils. Moderate sex ratio:- In this calegory the range of sex
ratio is between 870 to 890 females per 1000 males. During
2001 there were 23 tahsils while there were 29 tahsils in 2011
in this category of moderate sex ratio. High sex ratio:- This
calegory represents those tahsils which have sex ratlio more
than 900 females per 1000 males. During 2001, there were &
tahsils only while in 2011 there were 11 tahsils. The above
categorisalion shows a moderate change in sex ratio.

Spear Man's Rant Correlation:- For the proper analysis
of correlation between sex ratio and literacy rate for 2001 and
2011, Spearman's rank correlation is calculated for all the
tahsils. The rank correlation will explain the posilive or negative
correlation of both. For the census year 2001 the Spearman’s
rank correlation was (+) 0.23 while the value of rank correlation
for 2011 is (-) 0.41. Which explains that sex ratio and literacy
rate were positively correlated in 2001, however it becomes a
negative low level correlation in 2011. It means that in case of

- Haryana with increase in literacy rate, sex ratio is decreasing.

.
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Abstract

The present peper has explored how racial, class and gender oppression affect ine
experience of black woman in the United States of America through the two works of
Maya Angelou, an African-American writer. Through I Know Why the Caged Bird Sings
(1969), Angelou reflects upon how a young woman becomes a victim of racist and scxist
ideology in her tender years developing a diminished self-concept leading to identity crisis.
In Gather Together in my Name (1974), Angelou presents a teenage mother, an
unprofessional and unskilled black girl to whom only the most menial jobs are available.
For her survival, she tries her hand at all sorts of jobs. Maya's work experience shows
how the socially, economically and politically oppressive climate of the United States
excludes this woman from the constructive economic engagement and its impact on her as
an individual. But what is more commendable on the part of this woman is how she

survives all sorts of odds by displaying profound strength and tenacity and emerges as a
self-reliant and an independent person.

Keywords: Afro-American Literature, Racism, Sexism, Womanhood, Survival.
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(1969) presents Maya (the main character) a black girl, |
in the carly years of her life. In this town, there was a clear cut
Angelou avers, "ln Stamps, the segregation was SO complet
didn't really, absolutely know what whites looked like" (25). This s

her formative years spent in Stamps, Arkansas and describes her ing against all odds.
of rural Arkansas, until the birth of a son when she was seventeeT.l e in the gouth of the
For a young black girl in the late 1930s and early 1940s, gm\f/mg ltl:s upon the jssuc of
United States was a horrifying experience. She seriously deliber® d the ugliness of

i jences an
gender as well. She speaks of the countless disturbing eXPene;lb e majority of —
white prejudice thus "living inside a skin that was hated or feared 0¥ ©

‘ % i : orning, feeling happy
fellow citizens or about the sensation of getting on a bus 00 a lovely m . g k)
. ) y . . & D alUL
and suddenly seeing the passengers curl their lips in distaste or avert their ey : e
(Singin' and Swingin' and Get:in' Merry Like Christmas 260). Through .1er WOTKS SHE
doesn't articulate her individual experiences but the concerns of the collective.
The Great Depression (1929-1942) stirred the whole of United States. This ec
crisis hit the small towns like Stamps as well. There were not many jobs in Stamps at that
time. African-American men earned their living by farming whereas some women worked
on the cotton plantation farms and others took in washing and ironing in the houses of the
whitg people. As a child she witnessed the abuse faced by the members of her community
who in spite of ‘workl.n.g hard in fields, picking cotton, could never get ahead in lifc nor
come (zuth of thilrhdeblhtatmg financial positions. The afternoons, in cotton picking tune,
present the real ha { : : 1 : . |
Ry rsgnees of Black Southern life as "in the dying sunlight the people
ged, rather than their empty ¢ " : : : - |
M Pty cotton sacks" (I Know Why the Caged Bird Sings 8). Al
us gives Maya a first-hand knowledge of the conditi f . .
and sensitive child Maya and people of b . ition of Blacks. Here, this perceptive
legacy of racism, intolerg _p[ oLher community experience closely America's troubled
ance, vio o : : -
commni, Blacks oo ence and cultural divide against the African-American
" c¢ many other challenges while living in ¢ Whi : S
Angelou's autobiographies viv: g In a White domunated socicty.
i graphies vivify the Southern life a i
bru{allly incurred b : s a trouble spot with harshness and
. Y the whites. White dominanc th
reality that she is the ¢ opens the eyes of MFEDh
Acgelonud member of an oppressed and deprived class. Thedu :‘ﬁ‘g%rst- gl
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the white people. The crel Person could remain safe only when he stayed away froin

society. vhites makes the existence of blacks difficult in the

Angelou recounts many

such cpiIs
NU{,IL‘S where “ e . - |
and i here she comes across racist characters who

incident of her childhood wl

try to victimize her t
moers “Ior race

of her race in one way or the other She recalls

en she w

pivotal experience of her life for it tau
unfavourable conditions. This o

as just ten years old but later on 1t proved to he o
T > = s A

_ ght her how to survive and live with digmity cven in
1sode . ; ;

pi1sode involves three ‘powhitctrash’ girls who visit thei

andmother M

: rs. Henderson (Momma), imi :

; ! gt § a), imitate her ure
and her mannerism. Leaving aside all decency ) er postur

store. They taunt Mavya's i

first name. But Mrs. Henderson stands und; o o address her insolently by her
L ands unaisturbed like a rock, humming a hymn and
smiling throughout the scene. When Mrs. Henders ive i i
i of et g om . Henderson does not give in, they devise other
Ways 0 ing, imitating her, doing handstands and calling di
U S . g dirty names. Young Mava,
Conﬁ;nﬁn gu ndmother, wants to retaliate and teach them a good lesson by
£ Herally. B-Ut soon Maya realizes that she is "as clearly imprisoned behind
the scene as the actors outside are confined to their roles" (30). Grandmother taught Maya
"how to act around Whites without losing their dignity" (Cox 3). While interpreting :2'.11-;
episode, Dolly McPherson in Order Out of Chaos (1990) finds the confrontation as an
exarmple of Powhitetrash girls using their "power to treat Black woman like another chila”
(32). In this scene the black woman and her granddaughter adopt the dignified course of
silent endurance. This scene recaptures the black/white tension in the South of United
States in 1930s. Whites have full sanction of White community to practice power to belittle

blacks which can be noted on other occasions as well.
ecarious condition of the blacks. Maya

Angelou gives many instances to vivify the pr
notices how vulnerable his Uncle Willie is in spite of being crippled. His lameness offers
he potato bin to protect himself from the wrath
of Ku Klux Klan. Other incidents also provide a proof of a ritualistic violence of the Wiuie
world against Blacks. Maya's brother Bailey gets horrified when a local white asked this
just fourteen-years old to help him in disposing-off the body of a dead and rotten bluck
male. On another occasion, he started asking questions when he happens to sec the
emasculated body of another black man. This incident makes Maya reach the conclusion
that "the Black woman in the South who raises sons, grandsons and nephews had her
heartstrings tied to a hanging noose" (I Know Why the Caged Bird Sings 114).

The description of the Graduation Ceremony in Maya's schooﬁ%%%ﬂég‘n

Maya and her brother Bailey study in Lafayette County Training School meW‘-f

Wiaeb rhildren Mareuerite remembers her school which "distinguished ilsclti,p%-&mqﬁu' =
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him no protection and he too has to hide in t
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military slickness for
ion for the graduales
r, Mr. Donlcavy,

neither lay

| "(170} Educati h to the bl

ys and girls can come
| change in

q socia
an's kitcl

out of white m
racial |iberation. Peopl
of education for this very reas
to the cluldren going from one grade to anot

(o them that "parents who ¢
_which would be pressed t0 @

mony, @ momentous occaslo

was so important
othes for themselves . .

_Graduation Cere
rred when a white guest speake

about the possibility of career opportunitics
he white students a future full of

ready-made cl
the important event" (171)
as the whole community, is ma
Is the graduating class
ack men and women. Promising t
ties and praising the black community for producing good

advanced educational opportuni
sportsmen, he shatters the hopes of blacks gathered there to have a bright future. Angclou's
|

forth her thoughts into words to share with everybody

95 well
from Texarkana, tel
available to young bl

racial awareness grows and she puts
be it white or black audience: "the white kids were going to have a chance to become
Galileos and madam Curies and Edisons and Gaugins, and our boys (the girls weren't cven
in on it) would try to be Jesse Owenses and Joe Lousies" (179). She further remarks ¢
were maids and farmers, handymen and washerwomen, and anything higher that we
aspired to was farcical and presumptuous" (180). At this stage the pain is evident in Angelous
words, "It was awful to be Negro and have no control over my life. It was brutal to be
)'gung and already trained to sit quietly and listen to charges brought against my colour
with no.chancc of defence. We should all be dead" (180). By extolling the whites -.‘-.‘.g
de“_‘eaf?mg the blacks this guest speaker turns the sunshine into a cloud of u lmtﬂ l
del’vcr_"“g a racist speech meant especially for this occasion. He succeeds | .
the spirit of black students to some extent for some time. Maya loses h L dﬂnllpt‘!l;si:_:_'.
after Mr. Donleavy's address. She feels, "My name had lost its rin offer _Sf.:ns'e R ity
10 be nudged to go and receive my diploma" (180). The white soc?cl amiliarity and | L.
In her movement from childhood to adolescence, that is, from | &
i nnocence to

Angelou records certain social barriers she confronts and tries awarcness.
0 overcome
rac

assert a sense of self and relative freedom. Her first experience al T 10
1n

catapults her into the realization of her social reality and into a g""\ﬁﬂ‘ fﬁE‘TED
sﬁclf—worth‘ The encounter with Mrs. Viola Cullinan, a wealthy, Virgin;; COMOUS ey 1
for whom Maya works as a domestic help proves to be a major lurninl‘:n SW*
pretensions of a Southern white woman, this woman has no respect 1‘0:150. . ‘W
- e wem o BRA .+ n«  Satldinda ?(éqgéﬁdl@cbﬂege»
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* ame that Mrs. Cullinan finds too complicated to pronounce
Americans (0 change a black person’s name for convenience t‘,.\h' wns‘thc tradition of Wi
the symbol of one's identity. By eiongtnetn Mase [;qn:l:u:: 1$ L‘\L?ncrnll)’ consider e
humanity. Maya .who is sensitive, intelligent and alert com L; i ‘fh- v
csult, Ms. Cullinan's episode in / Know Why the Cagcdmf;;mds. s VIR W i
.pom[:‘. towards the significance of the realm of the ‘ptcrsomlf Ttl”g\ L K
|seck revenge on her by breaking some of her treasured heirlt;cn.ns 1111:1&:::\ r‘:’“"?‘-‘c' 5
s asserting hersell o

an individual. Maya Angelou aptly remarks:
[very person [ knew had a hellish horror of being “called out of his name." It
¢ S 1ce ’ : { e, Was
Tl dangeroub practice to call a negro anything that could be loosely constructed ll\
nsulting because of the centuries of their having been called niggers, jigs, ding
blackbirds, crows, boots and spooks. (109) , Jigs, dinges,

The episode 10 which Maya and her grandmother go to a dentist for Maya's treatment oo
the dentist refuses to put hand in Maya's mouth saying "I'd rather stick my hand in J |
mouth than in a nigger's"(189). The way derogatory word like "nigger” is used for al bi.:; K
person points rowards the clashes between whites and blacks and whites attitude tovaris
blacks. African-American literature s abounding with this theme of dehumanization whei«
a black person 1§ seen as devoid of basic human attributes. The hero of Richard Wright s
The Man Who Lived Underground (1944) behaves like a dog. If We Must Die (19 ),

¢ Kay, uses a series of animal references to convey the brutal altitice

poem by Claude M
g dogs, and pack of dog-like rie!

of whites towards blacks in America as hogs, barkin
ck women in America have been doubly oppressed, ‘angn
st groups. They always feel ashamed of their black 0.0t
d their neck. W.E.B. Du Bois 1n The Souls of Biocr
entieth century 18 the problen V!

If seen historically, the bla
in the slugfest of racist and sexl
as if it is an albatross hanging aroun
Folk (1903) has rightly observed: "The problem of the tw
the colour-line - the relation of the darker to the Jighter races of men in Asia and Afiica, n
America and the islands of the sea" (41). American society accorded white colour i >
as a positive attribute and a prefrequisite for success. Possibly no other social groap his

me a victim of such an unedifying spectacle of human debasement anc

depravity. As 2 result black women developed the neurosis of self hatred and self-cen -IJZ i

both individually and as a partof a group. They have made constant cfl'ort?, (thougla !
the white culture through internalizing white bty

in vein) to assimilate themselves n . : il
ideals. Jtis @ peculiar sensation which can bé called a "double cod&;}f;xﬁ%,rﬂp ¢
A% y Du Bois which means nalways looking at one's self throupit the €yes U'!_L,_:-I.:-.
. mate conl by the tape 0f 2 world that looks on in amused conty 1 d gL
o o tesin selftutted. Calvi | L
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in Sex and Racism in America (1965) makes the following obscerva .
I " WIT O

her than mitigates the N-:,.gr i

hair straighten©

nity

—[ hL‘ uucl“lﬂ, {o hL‘CUIIlL‘ \Vhi[c “HU[!H”]L'S ral

! el VLA der and
frustration in White world. No amount of paint, po¥

- . 1 i
J that make her femin

e : . oman's backgroun The

crase all the things in the ek WO S I ; able of attracting men. The N

acsthetic appreciation ol hersellas bheanly capi

ac ‘ 3O .

A - what she is. (133)
woman feels ashamed of il S ( leh hecauty In terms of standards st
+fincs bee :
- : o lives not only deb - : (M
he society in which young Mayd Iyt i ro-American Writers L
Siliiie 'l kes one internalize these notions. Al
also NRIkL

Ne Iy

w white 5 ; » whitc
et apopie wcters in their works who pursuc the
1

s The Bluest Eye, Maud Martha in Gw.nd 1
aul Marshail's Brown Girl, Florence 1; |
ucrite in Maya Angelou's / Know /'

fly on the wings of white oy,

about many such black women chi i
ideals. Pecola Breedlove in Tont Morrison
Brook's Maud Martha, Sclina Boyce in P
Baldwin's Go Tell it on the Mountain, Marg
Caged Bird Sings arc among some of them who
Marguerite fantasizes:
Wouldn't they be surprised when one day [ woke ou
real hair, which was long and blond, would take the pl
Momma wouldn't let me straighten? My light blue eyes
(! Know Why the Caged Bird Sings 2)

Later in conversation with her friend Rosa Guy, Angelou observes,

t of my black ugly dream, il iy
ace of the kinky mass i
were going to hypnotiz = 1,

"My belief as a cnild

that I was ugly was absolute, and nobody tried to disabuse me--not even Momma. M o i's
love enfolded me like an umbrella but at no time did she try to dissuade me of o # 1 cf
that I was an ugly child" (Elliot 235). This letter shows the repercussions of social conc. .11/ 111y
on a sensitive child growing up in an uncongenial environment. Black psychiatrists '\ |«
H. Grier and Price M. Cobb in their seminal work Black Rage (1992), through .1 us

case studies, reflect upon the psychological effect of perpetual confrontation beivw 1 4
debased self-image of a black girl/woman and an elevated self-image of a white .

1dn
can have on the psyche of a black girl/woman:
Her blackness is the antithesis of a creamy white skin, her lips are thick, he
] | . i * e} r bl 1 1S
kinky and short. She is, in fact, the antithesis of American beauty However 1 -
: Cr beautiful

she might be in a different setting with different standards iy, this count h
’ ry she |

| . " o ‘ concept g
impairment of her feminine narcissism which will have profo A

There can be no doubt that she will develop a damageq gef

her character development. (41)

ESTED

deprecation, undermining themselves. This scnse of losg of selfuyy i ck Womer I
3 . ; “wWort )
and low self-esteem which ultimately makes the person dovala. . 1f~ad§‘401 Sc‘ S
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und consequen -«
The non-realization of these internalized dreams generally leads ¢ b%‘TT
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AN Dty A Stady of Maya Angelou's 1 Know Why the Caged Bird Sings 45
ALl s LA _

and a fragmented image. Sidonic

_ Ann Smith in the arhicle, "7The Song of a Cagred 1
comments:

Maya Angelou's : — , 1 .
'_ 'F Cng gelou's autobiogy aphy... opens with a primal childhood scene that bring: it
focus the nature of the

. mprisoning environment from which the self will escape 1h
black girl child is (v

Xt apped within the cage of her own diminished self-image aron
which interlock the bars of natural and social forees. (6)

The way Angelou envisions herself in her childhood days, fighting for identity, epitor izc

the plight and trial of the black community as such. In Black Rage (1992) psychia st
Witliam H. Grier and Price M. Cobb describe this "imprisonment":

It the society says that to be attractive is (o be white, the Black woman finds ho scl
unwittingly striving to be something she cannot possibly be; and if femininity is r ote
in feeling oneself eminently lovable, then a society which views her as unattrac: ve

and repellent has also denied her this fundamental wellspring of femininity. (49)

Racial prejudice and economic depression can be held responsible for this dimir he
sense of self of an individual as well as the entire black community. Angelou's May: :
becomes a victim of this 'identity crisis' as she runs after ideals of white feminine b«
She too becomes victim of ideologies which propagate and accept white colour . th:
mark of real beauty. Afro-American literature is abound with such women char: :
who testify to the black women's quest for white beauty ideals. Having internalized
false ideals, the black woman fully ignores the psychological aspect of her true sel: Sh-
1solates herself from the 'whys' and 'hows' of her own existential conditions. This
makes them the culturally alienated pariahs. Pathetically divorced from their own cu turs
system, the black woman runs after the white bourgeois ideals and finally land in » th.
quagmire of delusion. The person who denounces his own cultural or racial self and « lopt-
other's mandates always remains in a suspended position. The culture which would : cep.
him he rejécts and the culture which rejects him, he accepts. Thus rejected by boin the
cultures he remains in a state of cultural limbo. The person who internalizes alien cu tura.
value system becomes a victim of darkness within his own psyche. Instead of assc (ing

such a person sometimes chooses not to say anything and in a way support hi. own
oppression.

Through this work Angelou demonstrates the manner in which any black fen: fe
violated by "masculine prejudice, white illogical hate and black lack of power" (/1o
Why the Caged Bird Sings 231) in her tender years and it also demonstrate th
"unnecessary insult" every southern girl faces in her growth (o adolescence Altel TﬁD
several years in Stamps, Arkansas and even after suffering all sorts UiF]&TﬁYEﬁ 1

)

delivered by White people from all walks of life, Maya has been taupght by the meig zGA
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her community and extended family to feel proud !

her identity.
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Gather Together in my Name (1974) 15 (he second Ang

child has become a mother now and her struggle to su

America has been portrayed in this work. Angclou st .
old. embarrassingly young, hrough this
haracter passcs t zh this

"I was seventeen, very
00 rcs}_‘r(-—n.‘:;ii e

and stepfather" (5)- Maya's €

beginning:
g simultancously; t

and 1 still lived with my mother
ambivalence where she finds herself too old and too youn iy
an Francisco and the time 15 ]

but too dependent. The place 1S S .
s hang around "the ghetto cOrm«! s like

940s leaving soldier ‘ | |
). The illusion of racial equality, with whicl
d less racial discrimiration

(she 1s a mother)

the end of World War 11, mid |
v left on a backyard fence" (5

forgotten laundr}
Blacks migrated to North in search of better job opporturitics an
begins to vamsh after World War I1.

The job market crashes and flow of easy money Stops.

responsibility of a child looks for a job but unfortunately sheis a
face discrimination because of her colour. This is how Maya begins her journey where 10

order to support her son and herself she takes up all sorts of menial jobs. She serves as «
short order cook, a nightclub dancer and a waitress. She runs own house of prostitution.
This long list of menial jobs (which includes even those on the fringes of society) that shc
pursues do not ensure her financial security. In this post war milieu, evil abounds. She
comes in contact with pimps, drug addicts, con men and street women, gamblers, black-
marketeers, boosters and a lover who steals for his living. At one point in the book she
herself works as a prostitute to help her perfidious boyfriend, to whom she is planning to
marry, her "sugardaddy" (a pimp known by this name) from debt. This situation demonstthes
hW" b'lack v\fomen are abused not only by whites but also by blacks. Black men try to
I::;f;l;zi;je;h\:sn;ez @ everyl conceivable way. They value their women only becaus:: of
e ildonca .Ca]\,m ;:1 I“lt'*:ls pr.ov:c?: emotional strength to them when they are lost, lonely or
e vl o L;; nton m his work T}.ve Sexual Mountain and.B/ack Women Writers:
N Slmd One;a!m e' anc'f Real L:fe- (1990) othelrves surfcmctly: "Although black

L pposite sides of racial mountain in America they tread on common

Maya, now seventeen with tlie
black girl who is bound to

TO s ' 1|
gr gnd when iticomes to the mountain of sex" (82).
[n suc 1tuati ' |
h a situation where a young black mother wrestles with the need to pr VT]-EB
]

her baby and is iy -
; y and is herself quite vulnerable, she is bound to make casy choj T@& .

1c moral values learnt i ‘ , : : : J asige
- | values learnt in the South. The alicnation and fragmentation 6f the Uer
verpowers dignj § ¥
powers dignified and ethical manners of the rural South. Thesc are the conditq, e
-0 Bl
cipal
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. Struggle for Survival and Dignity: A Study of Maya Angclou's I Know Why the Caged Bird Sings.. 47

The stage of life that Maya Angelou depicts in Gather Together in My Name is full of
uncertainties. She does not know who she is or what role is most conducive and appropriate
for her. Her quest for her place in the scheme of things, as a black woman in America, still
bothers her. In this state of restlessness, frustration, trying-on of roles, Maya undergoes
various experiences and through self-education moves from innocence towards maturity
and adulthood. This work presents the conditions in which the unemployed, drug addict,
blacks and others become criminals and the situations in which they are bound to live,
"Most of the friends, funny and bright during schooldays... sparkling young men who were
hopes of the community had thrown themselves against the sealed doors set up by a larger
community” (131) and this scene which presents chaos and destruction, shows a black
person's slide into iniquity in a white society. The white society acts villaincusly and criminally
as it reduces all Negro men to nothingness and impotence and women to lead lives of
whoredom and destitution.

For Maya this milieu becomes a point where her struggle to restore the sense of
dignity and personhood starts which is a necessary prerequisite for expressing any sense
of womanhood or racial identity. Maya, with the strength of t:er mind, manages to survive
in this world which is otherwise full of filth, without dignity and purpose especially for a
black woman. The themes that recur throughout all her works are courage, perseverance,
persistent effort against overwhelming obstacles and moving on the path of attaining selfhood
in spite of all hindrances and the last but not the least 'Survival'. Angelou in one of her
works, A Song Flung up to Heaven (2002), poignantly remarks:

How did it happen that we could nurse a nation of strangers, be maids to multitudes of

people who scorned us, and still walk with some majesty and stand with a degree of

pride? T thought of human beings, as far back as I had read, of our deeds and didoes.

According to some scientists, we were born to forever crawl in swamps, but for some

not vet explained reason, we decided to stand erect, and despite gravity's pull and

push, to remain standing. (211)

African-American women learnt to assert themselves by protesting against this
discrimination. They struggled for equal wages for equal work, better working conditions
n laundry; garment, service industry. Instead of remaining passive victims of oppression
they became pillars of strength for their families and worked incessantly and remarkably
for the upliftment of their race. Black feminist critic Patricia Hills Collinsin Black Feminist

T : o :

” ’}7”“8}1!. Knowledge, Consciousness and the Politics of 'EmPOVW""“”’A"{‘}TESWED_
U_e voices of these African-American women are not those of victims but of W’,L
(109) _ U
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; . P T ment li erseverdance
step towards women's survival. Her greatest achieve ics of courage and per
s 1 ik s
her personal pain and stand up for what is right. Her StOr®> gs beyond control, yet she
encourage others also. Blackness and womanness Were thin She survives all

: 10US.
ed victorl i L
merg h a situation a weak

Angelou too realises that a sclf-defined and W

strove to break these stereotypes to some extent and €
sorts of odds by displaying profound strength and tenacity- « 51111(:
willed person would have plunged into depression but young Maya fa S P
her inner strength and emerge as a self-reliant and independent African

emboldened by her long suffering and oppression.

back on her diligence,
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